1
|
Hussain G, Warda K, Cuono G, Autieri C. Density Functional Theory Study of the Spin-Orbit Insulating Phase in SnTe Cubic Nanowires: Implications for Topological Electronics. ACS APPLIED NANO MATERIALS 2024; 7:8044-8052. [PMID: 38633298 PMCID: PMC11019662 DOI: 10.1021/acsanm.4c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
We investigate the electronic, structural, and topological properties of the SnTe and PbTe cubic nanowires using ab initio calculations. Using standard and linear-scale density functional theory, we go from the ultrathin limit up to the nanowire thicknesses observed experimentally. Finite-size effects in the ultrathin limit produce an electric quadrupole and associated structural distortions; these distortions increase the band gap, but they get reduced with the size of the nanowires and become less and less relevant. Ultrathin SnTe cubic nanowires are trivial band gap insulators; we demonstrate that by increasing the thickness, there is an electronic transition to a spin-orbit insulating phase due to trivial surface states in the regime of thin nanowires. These trivial surface states with a spin-orbit gap of a few meV appear at the same k-point of the topological surface states. Going to the limit of thick nanowires, we should observe the transition to the topological crystalline insulator phase with the presence of two massive surface Dirac fermions hybridized with the persistent trivial surface states. Therefore, we have the copresence of massive Dirac surface states and trivial surface states close to the Fermi level in the same region of the k-space. According to our estimation, the cubic SnTe nanowires are trivial insulators below the critical thickness tc1 = 10 nm, and they become spin-orbit insulators between tc1 = 10 nm and tc2 = 17 nm, while they transit to the topological phase above the critical thickness of tc2 = 17 nm. These critical thickness values are in the range of typical experimental thicknesses, making the thickness a relevant parameter for the synthesis of topological cubic nanowires. Pb1-xSnxTe nanowires would have both these critical thicknesses tc1 and tc2 at larger values depending on the doping concentration. We discuss the limitations of density functional theory in the context of topological nanowires and the consequences of our results on topological electronics.
Collapse
Affiliation(s)
- Ghulam Hussain
- International
Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, Warsaw PL-02668, Poland
- Institute
for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Kinga Warda
- International
Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, Warsaw PL-02668, Poland
- Faculty
of Applied Physics and Mathematics, Gdansk
University of Technology, Gdańsk 80-233, Poland
| | - Giuseppe Cuono
- International
Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, Warsaw PL-02668, Poland
| | - Carmine Autieri
- International
Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, Warsaw PL-02668, Poland
| |
Collapse
|
2
|
Kiejna A, Kruk K, Ossowski T. Structural, electronic and magnetic properties of greigite Fe 3S 4by GGA and GGA+ Uversus SCAN meta-GGA density functionals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:135601. [PMID: 38096592 DOI: 10.1088/1361-648x/ad15c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023]
Abstract
The performance of exchange-correlation functional of density functional theory represented in generalized gradient approximation (GGA) and in the strongly constrained and appropriately normed (SCAN) meta-GGA scheme to study structural, electronic, and magnetic properties of greigite (Fe3S4) was investigated. The effects of inclusion of strong electron correlations represented by on-site Hubbard correctionU, and nonlocality of the long-range van der Waals (vdW) interactions were also considered. Geometry optimization yielded the inverse spinel structure and lattice parameter of greigite in good agreement with experimental data. Calculated electronic structure revealed a half-metallic nature of the greigite bands for the applied functionals except for GGA, which predicts metallic behavior. Antiferromagnetic coupling of iron ions in tetrahedral and octahedral coordinations makes the overall crystal structure ferrimagnetic. In general the GGA+Uand SCAN show comparable performance in prediction physical properties of greigite. Inclusion of the vdW correction does not change the character of the bands.
Collapse
Affiliation(s)
- Adam Kiejna
- Institute of Experimental Physics, University of Wrocław, Plac M. Borna 9, 50-204 Wrocław, Poland
| | - Karolina Kruk
- Institute of Experimental Physics, University of Wrocław, Plac M. Borna 9, 50-204 Wrocław, Poland
| | - Tomasz Ossowski
- Institute of Experimental Physics, University of Wrocław, Plac M. Borna 9, 50-204 Wrocław, Poland
| |
Collapse
|
3
|
Mathas D, Sarpa D, Holweger W, Wolf M, Bohnert C, Bakolas V, Procelewska J, Franke J, Rödel P, Skylaris CK. Calculating shear viscosity with confined non-equilibrium molecular dynamics: a case study on hematite - PAO-2 lubricant. RSC Adv 2023; 13:33994-34002. [PMID: 38019999 PMCID: PMC10660148 DOI: 10.1039/d3ra06929j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
The behaviour of confined lubricants at the atomic scale as affected by the interactions at the surface-lubricant interface is relevant in a range of technological applications in areas such as the automotive industry. In this paper, by performing fully atomistic molecular dynamics, we investigate the regime where the viscosity starts to deviate from the bulk behaviour, a topic of great practical and scientific relevance. The simulations consist of setting up a shear flow by confining the lubricant between iron oxide surfaces. By using confined Non-Equilibrium Molecular Dynamics (NEMD) simulations at a pressure range of 0.1-1.0 GPa at 100 °C, we demonstrate that the film thickness of the fluid affects the behaviour of viscosity. We find that by increasing the number of lubricant molecules, we approach the viscosity value of the bulk fluid derived from previously published NEMD simulations for the same system. These changes in viscosity occurred at film thicknesses ranging from 10.12 to 55.93 Å. The viscosity deviations at different pressures between the system with the greatest number of lubricant molecules and the bulk simulations varied from -16% to 41%. The choice of the utilized force field for treating the atomic interactions was also investigated.
Collapse
Affiliation(s)
- Dimitrios Mathas
- Department of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Davide Sarpa
- Department of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Walter Holweger
- Mechanical Engineering Department, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Marcus Wolf
- Schaeffler Technologies AG & Co. KG Herzogenaurach Germany
| | - Christof Bohnert
- Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau Gottlieb-Daimler-Str. 67663 Kaiserslautern Germany
| | | | | | - Joerg Franke
- Schaeffler Technologies AG & Co. KG Herzogenaurach Germany
| | - Philipp Rödel
- Schaeffler Technologies AG & Co. KG Herzogenaurach Germany
| | - Chris-Kriton Skylaris
- Department of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| |
Collapse
|
4
|
Li H, Guo M, Zhou Z, Long R, Fang WH. Excitation-Wavelength-Dependent Charge-Carrier Lifetime in Hematite: An Insight from Nonadiabatic Molecular Dynamics. J Phys Chem Lett 2023; 14:2448-2454. [PMID: 36867123 DOI: 10.1021/acs.jpclett.3c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Experiments have reported that the photoexcited carrier lifetime in α-Fe2O3 has a significant excitation-wavelength dependence but leave the physical mechanism unresolved. In this work, we rationalize the puzzling excitation-wavelength dependence of the photoexcited carrier dynamics in Fe2O3 by performing nonadiabatic molecular dynamics simulation based on the strongly constrained and appropriately normed functional, which accurately describes the electronic structure of Fe2O3. Photogenerated electrons with lower-energy excitation relax fast in the t2g conduction band within about 100 fs, while the photogenerated electrons with higher-energy excitation undergo first a slower interband relaxation from the eg lower state to the t2g upper state on a time scale of 135 ps, followed by the much faster t2g intraband relaxation. This study provides insight into the experimentally reported excitation-wavelength dependence of the carrier lifetime in Fe2O3 and a reference for regulating photogenerated carrier dynamics in transition-metal oxides through the light excitation wavelength.
Collapse
Affiliation(s)
- Hongliang Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Meng Guo
- Shandong Computer Science Center (National Supercomputer Centre in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan Institute of Supercomputing Technology, Jinan, Shandong 250101, P. R. China
| | - Zhaohui Zhou
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an 710064, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
5
|
Wang H, Zhou Z, Long R, Prezhdo OV. Passivation of Hematite by a Semiconducting Overlayer Reduces Charge Recombination: An Insight from Nonadiabatic Molecular Dynamics. J Phys Chem Lett 2023; 14:879-887. [PMID: 36661401 DOI: 10.1021/acs.jpclett.2c03643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hematite (α-Fe2O3) is a promising photoanode material for photoelectrochemical water splitting. Surface-passivating layers are effective in improving water oxidation kinetics; however, the passivation mechanism is not fully understood due to the complexity of interfacial reactions. Focusing on the Fe-terminated Fe2O3 (0001) surface that exhibits surface states in the band gap, we perform ab initio quantum dynamics simulations to study the effect of an α-Ga2O3 overlayer on charge recombination. The overlayer eliminates surface states and suppresses charge recombination 4-fold. This explains in part the observed cathodic shift in the onset potential for water oxidation. The increased charge carrier lifetime is an outcome of two factors, energy gap and electron-vibrational coupling, with a positive contribution from the former but a negative contribution from the latter. This work presents an advance in the atomistic time-domain understanding of the influence of surface passivation on charge recombination dynamics and provides guidance for designing novel α-Fe2O3 photoanodes.
Collapse
Affiliation(s)
- Hua Wang
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an710064, China
| | - Zhaohui Zhou
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an710064, China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing100875, China
| | - Oleg V Prezhdo
- Deparment of Chemistry, University of Southern California, Los Angeles, California90089, United States
| |
Collapse
|
6
|
Abbaspour Tamijani A, Augustine LJ, Bjorklund JL, Catalano JG, Mason SE. First-principles characterisation and comparison of clean, hydrated, and defect α-Al2O3 and α-Fe2O3 (110) surfaces. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.2009117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Jeffrey G. Catalano
- Department of Earth and Planetary Sciences, Washington University, St. Louis, USA
| | - Sara E. Mason
- Department of Chemistry, University of Iowa, Iowa City, USA
| |
Collapse
|
7
|
Augustine LJ, Abbaspour Tamijani A, Bjorklund JL, Al-Abadleh HA, Mason SE. Adsorption of small organic acids and polyphenols on hematite surfaces: Density Functional Theory + thermodynamics analysis. J Colloid Interface Sci 2021; 609:469-481. [PMID: 34887063 DOI: 10.1016/j.jcis.2021.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS The interactions of organic molecules with mineral surfaces are influenced by several factors such as adsorbate speciation, surface atomic and electronic structure, and environmental conditions. When coupled with thermodynamic techniques, energetics from atomistic modeling can provide a molecular-level picture of which factors determine reactivity. This is paramount for evaluating the chemical processes which control the fate of these species in the environment. EXPERIMENTS Inner-sphere adsorption of oxalate and pyrocatechol on (001), (110), and (012) α-Fe2O3 surfaces was modeled using Density Functional Theory (DFT). Unique bidentate binding modes were sampled along each facet to study how different adsorbate and surface factors govern site preference. Adsorption energetics were then calculated using a DFT + thermodynamics approach which combines DFT energies with tabulated data and Nernst-based corrective terms to incorporate different experimental parameters. FINDINGS Instead of a universal trend, each facet displays a unique factor that dominates site preference based on either strain (001), functional groups (110), or topography (012). Adsorption energies predict favorable inner-sphere adsorption for both molecules but opposite energetic trends with varying pH. Additionally, vibrational analysis was conducted for each system and compared to experimental IR data. The work presented here provides an effective, computational methodology to study numerous adsorption processes occurring at the surface-aqueous interface.
Collapse
Affiliation(s)
- Logan J Augustine
- University of Iowa, Department of Chemistry, Iowa City, IA 52242, USA.
| | | | | | - Hind A Al-Abadleh
- Wilfrid Laurier University, Department of Chemistry and Biochemistry, Waterloo, Ontario N2L 3C5, Canada.
| | - Sara E Mason
- University of Iowa, Department of Chemistry, Iowa City, IA 52242, USA.
| |
Collapse
|
8
|
Ngoc Nam H, Yamada R, Okumura H, Nguyen TQ, Suzuki K, Shinya H, Masago A, Fukushima T, Sato K. Intrinsic defect formation and the effect of transition metal doping on transport properties in a ductile thermoelectric material α-Ag 2S: a first-principles study. Phys Chem Chem Phys 2021; 23:9773-9784. [PMID: 33725034 DOI: 10.1039/d0cp06624a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, the electronic structure and transport properties of a ductile thermoelectric material α-Ag2S are examined using first-principles calculations combined with the Boltzmann transport equation within a constant relaxation-time approximation. The use of the exchange-correlation functional SCAN + rVV10 successfully describes the geometric and electronic structure of α-Ag2S with a direct bandgap value of 0.99 eV, which is consistent with the previous experimental observations. Based on the calculations of the formation energy of typical intrinsic defects, it is found that intrinsic defect formation greatly affects the conductivity of the system where silver vacancy and interstitial silver act as p-type and n-type defects, respectively. Large Seebeck coefficients at room-temperature, of around -760 μV K-1 for n-type and 1400 μV K-1 for p-type, are realized. It is also suggested that the doping of fully filled d-block elements such as Cu and Au not only maintained the Seebeck coefficients at high values but also improved electrical conductivity by more than 1.4 times, leading to the improvement of the power factor by up to 40% compared to the non-doped sample at low carrier concentration.
Collapse
Affiliation(s)
- Ho Ngoc Nam
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Baker LR, Diebold U, Park JY, Selloni A. Oxide chemistry and catalysis. J Chem Phys 2020; 153:050401. [DOI: 10.1063/5.0021819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- L. Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43221, USA
| | - Ulrike Diebold
- Institute of Applied Physics, TU Wien, 1040 Vienna, Austria
| | - Jeong Young Park
- Department of Chemistry, KAIST, Daejeon 34141, South Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 34141, South Korea
| | - Annabella Selloni
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
10
|
Ahart CS, Blumberger J, Rosso KM. Polaronic structure of excess electrons and holes for a series of bulk iron oxides. Phys Chem Chem Phys 2020; 22:10699-10709. [DOI: 10.1039/c9cp06482f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the use of a gap-optimized hybrid functional and large supercells, it is found that while the electron hole polaron generally localises onto a single iron site, the electron polaron localises across two iron sites of the same spin layer.
Collapse
Affiliation(s)
- Christian S. Ahart
- Department of Physics and Astronomy
- University College London
- London WC1E 6BT
- UK
| | - Jochen Blumberger
- Department of Physics and Astronomy
- University College London
- London WC1E 6BT
- UK
| | | |
Collapse
|