1
|
Kwan V, Maiti SR, Saika-Voivod I, Consta S. Salt Enrichment and Dynamics in the Interface of Supercooled Aqueous Droplets. J Am Chem Soc 2022; 144:11148-11158. [PMID: 35715222 DOI: 10.1021/jacs.2c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interconversion reaction of NaCl between the contact-ion pair (CIP) and the solvent-separated ion pair (SSIP) as well as the free-ion state in cold droplets has not yet been investigated. We report direct computational evidence that the lower is the temperature, the closer to the surface the ion interconversion reaction takes place. In supercooled droplets the enrichment of the subsurface in salt becomes more evident. The stability of the SSIP relative to the CIP increases as the ion-pairing is transferred toward the droplet's outer layers. In the free-ion state, where the ions diffuse independently in the solution, the number density of Cl- shows a broad maximum in the interior in addition to the well-known maximum in the surface. In the study of the reaction dynamics, we find a weak coupling between the interionic NaCl distance reaction coordinate and the solvent degrees of freedom, which contrasts with the diffusive crossing of the free energy barrier found in bulk solution modeling. The H2O self-diffusion coefficient is found to be at least an order of magnitude larger than that in the bulk solution. We propose to exploit the enhanced surface ion concentration at low temperature to eliminate salts from droplets in native mass spectrometry ionization methods.
Collapse
Affiliation(s)
- Victor Kwan
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Shoubhik R Maiti
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.,Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's A1B 3X7, Canada
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
2
|
Corti HR, Appignanesi GA, Barbosa MC, Bordin JR, Calero C, Camisasca G, Elola MD, Franzese G, Gallo P, Hassanali A, Huang K, Laria D, Menéndez CA, de Oca JMM, Longinotti MP, Rodriguez J, Rovere M, Scherlis D, Szleifer I. Structure and dynamics of nanoconfined water and aqueous solutions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:136. [PMID: 34779954 DOI: 10.1140/epje/s10189-021-00136-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
This review is devoted to discussing recent progress on the structure, thermodynamic, reactivity, and dynamics of water and aqueous systems confined within different types of nanopores, synthetic and biological. Currently, this is a branch of water science that has attracted enormous attention of researchers from different fields interested to extend the understanding of the anomalous properties of bulk water to the nanoscopic domain. From a fundamental perspective, the interactions of water and solutes with a confining surface dramatically modify the liquid's structure and, consequently, both its thermodynamical and dynamical behaviors, breaking the validity of the classical thermodynamic and phenomenological description of the transport properties of aqueous systems. Additionally, man-made nanopores and porous materials have emerged as promising solutions to challenging problems such as water purification, biosensing, nanofluidic logic and gating, and energy storage and conversion, while aquaporin, ion channels, and nuclear pore complex nanopores regulate many biological functions such as the conduction of water, the generation of action potentials, and the storage of genetic material. In this work, the more recent experimental and molecular simulations advances in this exciting and rapidly evolving field will be reported and critically discussed.
Collapse
Affiliation(s)
- Horacio R Corti
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina.
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Marcia C Barbosa
- Institute of Physics, Federal University of Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - J Rafael Bordin
- Department of Physics, Institute of Physics and Mathematics, 96050-500, Pelotas, RS, Brazil
| | - Carles Calero
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - M Dolores Elola
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Ali Hassanali
- Condensed Matter and Statistical Physics Section (CMSP), The International Center for Theoretical Physics (ICTP), Trieste, Italy
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Daniel Laria
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia A Menéndez
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Joan M Montes de Oca
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - M Paula Longinotti
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Rodriguez
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Damián Scherlis
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Igal Szleifer
- Biomedical Engineering Department, Northwestern University, Evanston, USA
| |
Collapse
|
3
|
Lupi L, Vázquez Ramírez B, Gallo P. Dynamical crossover and its connection to the Widom line in supercooled TIP4P/Ice water. J Chem Phys 2021; 155:054502. [PMID: 34364341 DOI: 10.1063/5.0059190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We perform molecular dynamics simulations with the TIP4P/Ice water model to characterize the relationship between dynamics and thermodynamics of liquid water in the supercooled region. We calculate the relevant properties of the phase diagram, and we find that TIP4P/Ice presents a retracing line of density maxima, similar to what was previously found for atomistic water models and models of other tetrahedral liquids. For this model, a liquid-liquid critical point between a high-density liquid and a low-density liquid was recently found. We compute the lines of the maxima of isothermal compressibility and the minima of the coefficient of thermal expansion in the one phase region, and we show that these lines point to the liquid-liquid critical point while collapsing on the Widom line. This line is the line of the maxima of correlation length that emanates from a second order critical point in the one phase region. Supercooled water was found to follow mode coupling theory and to undergo a transition from a fragile to a strong behavior right at the crossing of the Widom line. We find here that this phenomenology also happens for TIP4P/Ice. Our results appear, therefore, to be a general characteristic of supercooled water, which does not depend on the interaction potential used, and they reinforce the idea that the dynamical crossover from a region where the relaxation mechanism is dominated by cage relaxation to a region where cages are frozen and hopping dominates is correlated in water to a phase transition between a high-density liquid and a low-density liquid.
Collapse
Affiliation(s)
- Laura Lupi
- Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
| | - Benjamín Vázquez Ramírez
- Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
| | - Paola Gallo
- Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
| |
Collapse
|
4
|
Bredt AJ, Mendes de Oliveira D, Urbina AS, Slipchenko LV, Ben-Amotz D. Hydration and Seamless Integration of Hydrogen Peroxide in Water. J Phys Chem B 2021; 125:6986-6993. [PMID: 34133177 DOI: 10.1021/acs.jpcb.1c03107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Raman multivariate curve resolution is used to decompose the vibrational spectra of aqueous hydrogen peroxide (H2O2) into pure water, dilute H2O2, and concentrated H2O2 spectral components. The dilute spectra reveal four sub-bands in the OH stretch region, assigned to the OH stretch and Fermi resonant bend overtone of H2O2, and two nonequivalent OH groups on water molecules that donate a hydrogen bond to H2O2. At high concentrations, a spectral component resembling pure H2O2 emerges. Our results further demonstrate that H2O2 perturbs the structure of water significantly less than either methanol or sodium chloride of the same concentration, as evidenced by comparing the hydration-shell spectra of tert-butyl alcohol dissolved in the three aqueous solutions.
Collapse
Affiliation(s)
- Aria J Bredt
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Andres S Urbina
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lyudmila V Slipchenko
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dor Ben-Amotz
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Bianco V, de Hijes PM, Lamas CP, Sanz E, Vega C. Anomalous Behavior in the Nucleation of Ice at Negative Pressures. PHYSICAL REVIEW LETTERS 2021; 126:015704. [PMID: 33480790 DOI: 10.1103/physrevlett.126.015704] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/14/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Ice nucleation is a phenomenon that, despite the relevant implications for life, atmospheric sciences, and technological applications, is far from being completely understood, especially under extreme thermodynamic conditions. In this work we present a computational investigation of the homogeneous ice nucleation at negative pressures. By means of the seeding technique we estimate the size of the ice critical nucleus N_{c} for the TIP4P/Ice water model. This is done along the isotherms 230, 240, and 250 K, from positive to negative pressures until reaching the liquid-gas kinetic stability limit (where cavitation cannot be avoided). We find that N_{c} is nonmonotonic upon depressurization, reaching a minimum at negative pressures in the doubly metastable region of water. According to classical nucleation theory we establish the nucleation rate J and the surface tension γ, revealing a retracing behavior of both when the liquid-gas kinetic stability limit is approached. We also predict a reentrant behavior of the homogeneous nucleation line. The reentrance of these properties is related to the reentrance of the coexistence line at negative pressure, revealing new anomalies of water. The results of this work suggest the possibility of having metastable samples of liquid water for long times at negative pressure provided that heterogeneous nucleation is suppressed.
Collapse
Affiliation(s)
- Valentino Bianco
- Departamento de Quimica Fisica, Facultad de Quimica, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid 28040, Spain
| | - P Montero de Hijes
- Departamento de Quimica Fisica, Facultad de Quimica, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid 28040, Spain
| | - Cintia P Lamas
- Departamento de Quimica Fisica, Facultad de Quimica, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid 28040, Spain
| | - Eduardo Sanz
- Departamento de Quimica Fisica, Facultad de Quimica, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid 28040, Spain
| | - Carlos Vega
- Departamento de Quimica Fisica, Facultad de Quimica, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid 28040, Spain
| |
Collapse
|