1
|
Brook R, Symonds C, Shalashilin DV. Full wave function cloning for improving convergence of the multiconfigurational Ehrenfest method: Tests in the zero-temperature spin-boson model regime. J Chem Phys 2024; 161:064102. [PMID: 39120032 DOI: 10.1063/5.0221184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
In this paper, we report a new algorithm for creating an adaptive basis set in the Multiconfigurational Ehrenfest (MCE) method, which is termed Full Cloning (FC), and test it together with the existing Multiple Cloning (MC) using the spin-boson model at zero-temperature as a benchmark. The zero-temperature spin-boson regime is a common hurdle in the development of methods that seek to model quantum dynamics. Two versions of MCE exist. We demonstrate that MC is vital for the convergence of MCE version 2 (MCEv2). The first version (MCEv1) converges much better than MCEv2, but FC improves its convergence in a few cases where it is hard to converge it with the help of a reasonably small size of the basis set.
Collapse
Affiliation(s)
- Ryan Brook
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | |
Collapse
|
2
|
Humphries BS, Kinslow JC, Green D, Jones GA. Role of Quantum Information in HEOM Trajectories. J Chem Theory Comput 2024; 20:5383-5395. [PMID: 38889316 PMCID: PMC11238535 DOI: 10.1021/acs.jctc.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Open quantum systems often operate in the non-Markovian regime where a finite history of a trajectory is intrinsic to its evolution. The degree of non-Markovianity for a trajectory may be measured in terms of the amount of information flowing from the bath back into the system. In this study, we consider how information flows through the auxiliary density operators (ADOs) in the hierarchical equations of motion. We consider three cases for a range of baths, underdamped, intermediate, and overdamped. By understanding how information flows, we are able to determine the relative importance of different ADOs within the hierarchy. We show that ADOs sharing a common Matsubara axis behave similarly, while ADOs on different Matsubara axes behave differently. Using this knowledge, we are able to truncate hierarchies significantly, thus reducing the computation time, while obtaining qualitatively similar results. This is illustrated by comparing 2D electronic spectra for a molecule with an underdamped vibration subsumed into the bath spectral density.
Collapse
Affiliation(s)
- Ben S. Humphries
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Joshua C. Kinslow
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Dale Green
- Physics,
Faculty of Science, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Garth A. Jones
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| |
Collapse
|
3
|
Zuo L, Ye L, Li X, Xu RX, Yan Y, Zheng X. Unraveling the Nature of Spin Coupling in a Metal-Free Diradical: Theoretical Distinction of Ferromagnetic and Antiferromagnetic Interactions. J Phys Chem Lett 2024; 15:5761-5769. [PMID: 38776132 DOI: 10.1021/acs.jpclett.4c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Metal-free diradicals based on polycyclic aromatic hydrocarbons are promising candidates for organic spintronics due to their stable magnetism and tunable spin coupling. However, distinguishing and elucidating the origins of ferromagnetic and antiferromagnetic interactions in these systems remain challenging. Here, we investigate the 2-OS diradical molecule sandwiched between gold electrodes using a combined density functional theory and hierarchical equations of motion approach. We find that the dihedral angle between the radical moieties controls the nature and strength of the intramolecular spin coupling, transitioning smoothly from antiferromagnetic to ferromagnetic as the angle increases. Distinct features in the inelastic electron tunneling spectra are identified that can discern the two coupling regimes, including spin excitation steps whose energies directly reveal the exchange coupling constant. Mechanical stretching of the junction is predicted to modulate the spectral line shapes by adjusting the hybridization of the molecular radicals with the electrodes. Our work elucidates the electronic origin of tunable spin interactions in 2-OS and provides spectroscopic fingerprints for characterizing magnetism in metal-free diradicals.
Collapse
Affiliation(s)
- Lijun Zuo
- Hefei National Research Center for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lyuzhou Ye
- Hefei National Research Center for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiangyang Li
- Hefei National Research Center for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Rui-Xue Xu
- Hefei National Research Center for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiao Zheng
- Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
4
|
Chen X, Franco I. Bexcitonics: Quasiparticle approach to open quantum dynamics. J Chem Phys 2024; 160:204116. [PMID: 38814013 DOI: 10.1063/5.0198567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
We develop a quasiparticle approach to capture the dynamics of open quantum systems coupled to bosonic thermal baths of arbitrary complexity based on the Hierarchical Equations of Motion (HEOM). This is done by generalizing the HEOM dynamics and mapping it into that of the system in interaction with a few bosonic fictitious quasiparticles that we call bexcitons. Bexcitons arise from a decomposition of the bath correlation function into discrete features. Specifically, bexciton creation and annihilation couple the auxiliary density matrices in the HEOM. The approach provides a systematic strategy to construct exact quantum master equations that include the system-bath coupling to all orders even for non-Markovian environments. Specifically, by introducing different metrics and representations for the bexcitons it is possible to straightforwardly generate different variants of the HEOM, demonstrating that all these variants share a common underlying quasiparticle picture. Bexcitonic properties, while unphysical, offer a coarse-grained view of the correlated system-bath dynamics and its numerical convergence. For instance, we use it to analyze the instability of the HEOM when the bath is composed of underdamped oscillators and show that it leads to the creation of highly excited bexcitons. The bexcitonic picture can also be used to develop more efficient approaches to propagate the HEOM. As an example, we use the particle-like nature of the bexcitons to introduce mode-combination of bexcitons in both number and coordinate representation that uses the multi-configuration time-dependent Hartree to efficiently propagate the HEOM dynamics.
Collapse
Affiliation(s)
- Xinxian Chen
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Department of Physics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
5
|
Dan X, Shi Q. Theoretical study of nonadiabatic hydrogen atom scattering dynamics on metal surfaces using the hierarchical equations of motion method. J Chem Phys 2023; 159:044101. [PMID: 37486050 DOI: 10.1063/5.0155172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
Hydrogen atom scattering on metal surfaces is investigated based on a simplified Newns-Anderson model. Both the nuclear and electronic degrees of freedom are treated quantum mechanically. By partitioning all the surface electronic states as the bath, the hierarchical equations of motion method for the fermionic bath is employed to simulate the scattering dynamics. It is found that, with a reasonable set of parameters, the main features of the recent experimental studies of hydrogen atom scattering on metal surfaces can be reproduced. Vibrational states on the chemisorption state whose energies are close to the incident energy are found to play an important role, and the scattering process is dominated by a single-pass electronic transition forth and back between the diabatic physisorption and chemisorption states. Further study on the effects of the atom-surface coupling strength reveals that, upon increasing the atom-surface coupling strength, the scattering mechanism changes from typical nonadiabatic transitions to dynamics in the electronic friction regime.
Collapse
Affiliation(s)
- Xiaohan Dan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Erpenbeck A, Gull E, Cohen G. Quantum Monte Carlo Method in the Steady State. PHYSICAL REVIEW LETTERS 2023; 130:186301. [PMID: 37204908 DOI: 10.1103/physrevlett.130.186301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/07/2022] [Accepted: 04/07/2023] [Indexed: 05/21/2023]
Abstract
We present a numerically exact steady-state inchworm Monte Carlo method for nonequilibrium quantum impurity models. Rather than propagating an initial state to long times, the method is directly formulated in the steady state. This eliminates any need to traverse the transient dynamics and grants access to a much larger range of parameter regimes at vastly reduced computational costs. We benchmark the method on equilibrium Green's functions of quantum dots in the noninteracting limit and in the unitary limit of the Kondo regime. We then consider correlated materials described with dynamical mean field theory and driven away from equilibrium by a bias voltage. We show that the response of a correlated material to a bias voltage differs qualitatively from the splitting of the Kondo resonance observed in bias-driven quantum dots.
Collapse
Affiliation(s)
- A Erpenbeck
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - E Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - G Cohen
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
7
|
Xu Y, Liu C, Ma H. Hierarchical Mapping for Efficient Simulation of Strong System-Environment Interactions. J Chem Theory Comput 2023; 19:426-435. [PMID: 36626721 DOI: 10.1021/acs.jctc.2c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Quantum dynamics (QD) simulation is a powerful tool for interpreting ultrafast spectroscopy experiments and unraveling their microscopic mechanism in out-of-equilibrium excited state behaviors in various chemical, biological, and material systems. Although state-of-the-art numerical QD approaches such as the time-dependent density matrix renormalization group (TD-DMRG) already greatly extended the solvable system size of general linearly coupled exciton-phonon models with up to a few hundred phonon modes, the accurate simulation of larger system sizes or strong system-environment interactions is still computationally highly challenging. Based on quantum information theory (QIT), in this work, we realize that only a small number of effective phonon modes couple to the excitonic system directly regardless of a large or even infinite number of modes in the condensed phase environment. On top of the identified small number of direct effective modes, we propose a hierarchical mapping (HM) approach through performing block Lanczos transformations on the remaining indirect modes, which transforms the Hamiltonian matrix to a nearly block-tridiagonal form and eliminates the long-range interactions. Numerical tests on model spin-boson systems and realistic singlet fission models in a rubrene crystal environment with up to 7000 modes and strong system-environment interactions indicate HM can reduce the system size by 1-2 orders of magnitude and accelerate the calculation by ∼80% without losing accuracy.
Collapse
Affiliation(s)
- Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chungen Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, Qingdao Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
8
|
Zhang D, Zuo L, Ye L, Chen ZH, Wang Y, Xu RX, Zheng X, Yan Y. Hierarchical equations of motion approach for accurate characterization of spin excitations in quantum impurity systems. J Chem Phys 2023; 158:014106. [PMID: 36610957 DOI: 10.1063/5.0131739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent technological advancement in scanning tunneling microscopes has enabled the measurement of spin-field and spin-spin interactions in single atomic or molecular junctions with an unprecedentedly high resolution. Theoretically, although the fermionic hierarchical equations of motion (HEOM) method has been widely applied to investigate the strongly correlated Kondo states in these junctions, the existence of low-energy spin excitations presents new challenges to numerical simulations. These include the quest for a more accurate and efficient decomposition for the non-Markovian memory of low-temperature environments and a more careful handling of errors caused by the truncation of the hierarchy. In this work, we propose several new algorithms, which significantly enhance the performance of the HEOM method, as exemplified by the calculations on systems involving various types of low-energy spin excitations. Being able to characterize both the Kondo effect and spin excitation accurately, the HEOM method offers a sophisticated and versatile theoretical tool, which is valuable for the understanding and even prediction of the fascinating quantum phenomena explored in cutting-edge experiments.
Collapse
Affiliation(s)
- Daochi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lijun Zuo
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lyuzhou Ye
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Hao Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale and iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Zuo L, Zhuang Q, Ye L, Yan Y, Zheng X. Unveiling the Decisive Factor for the Sharp Transition in the Scanning Tunneling Spectroscopy of a Single Nickelocene Molecule. J Phys Chem Lett 2022; 13:11262-11270. [PMID: 36448930 DOI: 10.1021/acs.jpclett.2c03168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Scanning tunneling microscopy (STM) has been utilized to realize the precise measurement and control of local spin states. Experiments have demonstrated that when a nickelocene (Nc) molecule is attached to the apex of an STM tip, the dI/dV spectra exhibit a sharp or a smooth transition when the tip is displaced toward the substrate. However, what leads to the two distinct types of transitions remains unclear, and more intriguingly, the physical origin of the abrupt change in the line shape of dI/dV spectra remains unclear. To clarify these intriguing issues, we perform first-principles-based simulations on the STM tip control process for the Cu tip/Nc/Cu(100) junction. In particular, we find that the suddenly enhanced hybridization between the d orbitals on the Ni ion and the metallic bands in the substrate leads to Kondo correlation overwhelming spin excitation, which is the main cause of the sharp transition in the dI/dV spectra observed experimentally.
Collapse
Affiliation(s)
- Lijun Zuo
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qingfeng Zhuang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lyuzhou Ye
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale and iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Wang Y, Chen ZH, Xu RX, Zheng X, Yan Y. A statistical quasi-particles thermofield theory with Gaussian environments: System-bath entanglement theorem for nonequilibrium correlation functions. J Chem Phys 2022; 157:044102. [DOI: 10.1063/5.0094875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
For open quantum systems, environmental dissipative effect can be represented by statistical quasi-particles, namely dissipatons. We exploit this fact to establish the dissipaton thermofield theory. The resulting generalized Langevin dynamics of absorptive and emissive thermofield operators are effectively noise-resolved. The system-bath entanglement theorem is then readily followed between a important class of nonequilibrium steady-state correlation functions. All these relations are validated numerically. A simple corollary is the transport current expression, which exactly recovers the result obtained from the nonequilibrium Green's function formalism.
Collapse
Affiliation(s)
- Yao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, China
| | - Zi-Hao Chen
- University of Science and Technology of China, China
| | - Rui-Xue Xu
- University of Science and Technology of China, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, China
| | - YiJing Yan
- Department of Chemical Physics, USTC, China
| |
Collapse
|
11
|
Xing T, Li T, Yan Y, Bai S, Shi Q. Application of the imaginary time hierarchical equations of motion method to calculate real time correlation functions. J Chem Phys 2022; 156:244102. [DOI: 10.1063/5.0095790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We investigate the application of the imaginary time hierarchical equations of motion method to calculate real time quantum correlation functions. By starting from the path integral expression for the correlated system–bath equilibrium state, we first derive a new set of equations that decouple the imaginary time propagation and the calculation of auxiliary density operators. The new equations, thus, greatly simplify the calculation of the equilibrium correlated initial state that is subsequently used in the real time propagation to obtain the quantum correlation functions. It is also shown that a periodic decomposition of the bath imaginary time correlation function is no longer necessary in the new equations such that different decomposition schemes can be explored. The applicability of the new method is demonstrated in several numerical examples, including the spin-Boson model, the Holstein model, and the double-well model for proton transfer reaction.
Collapse
Affiliation(s)
- Tao Xing
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianchu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Ke Y, Kaspar C, Erpenbeck A, Peskin U, Thoss M. Nonequilibrium reaction rate theory: Formulation and implementation within the hierarchical equations of motion approach. J Chem Phys 2022; 157:034103. [DOI: 10.1063/5.0098545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The study of chemical reactions in environments under nonequilibrium conditions has been of interest recently in a variety of contexts, including current-induced reactions in molecular junctions and scanning tunneling microscopy experiments. In this work, we outline a fully quantum mechanical, numerically exact approach to describe chemical reaction rates in such nonequilibrium situations. The approach is based on an extension of the flux correlation function formalism to nonequilibrium conditions and uses a mixed real and imaginary time hierarchical equations of motion approach for the calculation of rate constants. As a specific example, we investigate current-induced intramolecular proton transfer reactions in a molecular junction for different applied bias voltages and molecule-lead coupling strengths.
Collapse
Affiliation(s)
- Yaling Ke
- Institute of Physics, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | - Uri Peskin
- Chemistry, Technion Israel Institute of Technology, Israel
| | - Michael Thoss
- University of Freiburg Institute of Physics, Germany
| |
Collapse
|
13
|
Chen ZH, Wang Y, Zheng X, Xu RX, Yan Y. Universal time-domain Prony fitting decomposition for optimized hierarchical quantum master equations. J Chem Phys 2022; 156:221102. [DOI: 10.1063/5.0095961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we propose the time-domain Prony fitting decomposition (t-PFD) as an accurate and effcient exponential series method, applicable to arbitrary bath correlation functions. The resulting numerical effciency of hierarchical equations of motion (HEOM) formalism is greatly optimized, especially in low temperature regimes that would be inaccessible with other methods. For demonstration, we calibrate the present t-PFD against the celebrated Padé spectrum decomposition (PSD) method, followed by converged HEOM evaluations on the single-impurity Anderson model system.
Collapse
Affiliation(s)
- Zi-Hao Chen
- University of Science and Technology of China, China
| | - Yao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, China
| | - Rui-Xue Xu
- University of Science and Technology of China, China
| | - YiJing Yan
- Department of Chemical Physics, USTC, China
| |
Collapse
|
14
|
Ke Y, Borrelli R, Thoss M. Hierarchical equations of motion approach to hybrid fermionic and bosonic environments: Matrix product state formulation in twin space. J Chem Phys 2022; 156:194102. [DOI: 10.1063/5.0088947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We extend the twin-space formulation of the hierarchical equations of motion approach in combination with the matrix product state representation (introduced in J. Chem. Phys. 150, 234102, [2019]) to nonequilibrium scenarios where the open quantum system is coupled to a hybrid fermionic and bosonic environment. The key ideas used in the extension are a reformulation of the hierarchical equations of motion for the auxiliary density matrices into a time-dependent Schrödinger-like equation for an augmented multi-dimensional wave function as well as a tensor decomposition into a product of low-rank matrices. The new approach facilitates accurate simulations of non-equilibrium quantum dynamics in larger and more complex open quantum systems. The performance of the method is demonstrated for a model of a molecular junction exhibiting current-induced mode-selective vibrational excitation.
Collapse
Affiliation(s)
- Yaling Ke
- Institute of Physics, Albert-Ludwigs-Universität Freiburg, Germany
| | - Raffaele Borrelli
- Department of Agricoltural Science, Università degli Studi di Torino, Italy
| | - Michael Thoss
- University of Freiburg Institute of Physics, Germany
| |
Collapse
|
15
|
Ullah A, Dral PO. Predicting the future of excitation energy transfer in light-harvesting complex with artificial intelligence-based quantum dynamics. Nat Commun 2022; 13:1930. [PMID: 35411054 PMCID: PMC9001686 DOI: 10.1038/s41467-022-29621-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/16/2022] [Indexed: 01/20/2023] Open
Abstract
Exploring excitation energy transfer (EET) in light-harvesting complexes (LHCs) is essential for understanding the natural processes and design of highly-efficient photovoltaic devices. LHCs are open systems, where quantum effects may play a crucial role for almost perfect utilization of solar energy. Simulation of energy transfer with inclusion of quantum effects can be done within the framework of dissipative quantum dynamics (QD), which are computationally expensive. Thus, artificial intelligence (AI) offers itself as a tool for reducing the computational cost. Here we suggest AI-QD approach using AI to directly predict QD as a function of time and other parameters such as temperature, reorganization energy, etc., completely circumventing the need of recursive step-wise dynamics propagation in contrast to the traditional QD and alternative, recursive AI-based QD approaches. Our trajectory-learning AI-QD approach is able to predict the correct asymptotic behavior of QD at infinite time. We demonstrate AI-QD on seven-sites Fenna-Matthews-Olson (FMO) complex.
Collapse
Affiliation(s)
- Arif Ullah
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Pavlo O Dral
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
16
|
Dan X, Xu M, Yan Y, Shi Q. Generalized master equation for charge transport in a molecular junction: Exact memory kernels and their high order expansion. J Chem Phys 2022; 156:134114. [PMID: 35395901 DOI: 10.1063/5.0086663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive a set of generalized master equations (GMEs) to study charge transport dynamics in molecular junctions using the Nakajima-Zwanzig-Mori projection operator approach. In the new GME, time derivatives of population on each quantum state of the molecule, as well as the tunneling current, are calculated as the convolution of time non-local memory kernels with populations on all system states. The non-Markovian memory kernels are obtained by combining the hierarchical equations of motion (HEOM) method and a previous derived Dyson relation for the exact kernel. A perturbative expansion of these memory kernels is then calculated using the extended HEOM developed in our previous work [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. By using the resonant level model and the Anderson impurity model, we study properties of the exact memory kernels and analyze convergence properties of their perturbative expansions with respect to the system-bath coupling strength and the electron-electron repulsive energy. It is found that exact memory kernels calculated from HEOM exhibit short memory times and decay faster than the population and current dynamics. The high order perturbation expansion of the memory kernels can give converged results in certain parameter regimes. The Padé and Landau-Zener resummation schemes are also found to give improved results over low order perturbation theory.
Collapse
Affiliation(s)
- Xiaohan Dan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Zhuang Q, Wang X, Ye L, Yan Y, Zheng X. Origin of Asymmetric Splitting of Kondo Peak in Spin-Polarized Scanning Tunneling Spectroscopy: Insights from First-Principles-Based Simulations. J Phys Chem Lett 2022; 13:2094-2100. [PMID: 35225612 DOI: 10.1021/acs.jpclett.2c00228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The spin-polarized scanning tunneling microscope (SP-STM) has served as a versatile tool for probing and manipulating the spintronic properties of atomic and molecular devices with high precision. The interplay between the local spin state and its surrounding magnetic environment significantly affects the transport behavior of the device. Particularly, in the contact regime, the strong hybridization between the SP-STM tip and the magnetic atom or molecule could give rise to unconventional Kondo resonance signatures in the differential conductance (dI/dV) spectra. This poses challenges for the simulation of a realistic tip control process. By combining the density functional theory and the hierarchical equations of motion methods, we achieve first-principles-based simulation of the control of a Ni-tip/Co/Cu(100) junction in both the tunneling and contact regimes. The calculated dI/dV spectra reproduce faithfully the experimental data. A cotunneling mechanism is proposed to elucidate the physical origin of the observed unconventional Kondo signatures.
Collapse
Affiliation(s)
- Qingfeng Zhuang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoli Wang
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong 253023, China
| | - Lyuzhou Ye
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Ikeda T, Nakayama A. Collective bath coordinate mapping of "hierarchy" in hierarchical equations of motion. J Chem Phys 2022; 156:104104. [DOI: 10.1063/5.0082936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Akira Nakayama
- Department of Chemical System Engineering, University of Tokyo, Japan
| |
Collapse
|
19
|
Computational Characterization of Nanosystems. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
20
|
Zhang D, Ding X, Zhang HD, Zheng X, Yan Y. Adiabatic terminator for fermionic hierarchical equations of motion. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Daochi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics & CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
| | - Xu Ding
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics & CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
| | - Hou-Dao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics & CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics & CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale & iChEM, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
21
|
Mao H, Jin J, Wang S, Yan Y. Nonequilibrium Kondo regime current noise spectrum of quantum dot systems with the single impurity Anderson model. J Chem Phys 2021; 155:014104. [PMID: 34241380 DOI: 10.1063/5.0045346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the nonequilibrium current noise spectrum of single impurity Anderson model quantum dot systems on the basis of the accurate dissipation equation of motion evaluations. By comparing between the equilibrium and nonequilibrium cases and between the non-Kondo and Kondo regimes, we identify the current noise spectrum of the nonequilibrium Kondo features that actually appear in the entire region of ω ∈ [-eV, eV]. It is well known that the primary Kondo characteristics at ω = ±eV = ±(μL - μR) display asymmetrical upturns and remarkable peaks in S(ω) and dS(ω)/dω, respectively. These features are originated from the Rabi interference of the transport current dynamics, with the Kondo oscillation frequency of |eV|. Moreover, we also identify the minor but very distinguishable inflections, crossing over from ω = -eV to ω = +eV. This uncovered feature would be related to the interference between two Kondo resonance channels.
Collapse
Affiliation(s)
- Hong Mao
- Department of Physics, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinshuang Jin
- Department of Physics, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shikuan Wang
- Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale & i ChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
22
|
Gelin MF, Borrelli R, Chen L. Hierarchical Equations-of-Motion Method for Momentum System-Bath Coupling. J Phys Chem B 2021; 125:4863-4873. [PMID: 33929205 PMCID: PMC8279550 DOI: 10.1021/acs.jpcb.1c02431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For a broad class of quantum models of practical interest, we demonstrate that the Hamiltonian of the system nonlinearly coupled to a harmonic bath through the system and bath coordinates can be equivalently mapped into the Hamiltonian of the system bilinearly coupled to the bath through the system and bath momenta. We show that the Hamiltonian with bilinear system-bath momentum coupling can be treated by the hierarchical equations-of-motion (HEOM) method and present the corresponding proof-of-principle simulations. The developed methodology creates the opportunity to scrutinize a new family of nonlinear quantum systems by the numerically accurate HEOM method.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany
| |
Collapse
|
23
|
Tanimura Y. Numerically "exact" approach to open quantum dynamics: The hierarchical equations of motion (HEOM). J Chem Phys 2021; 153:020901. [PMID: 32668942 DOI: 10.1063/5.0011599] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An open quantum system refers to a system that is further coupled to a bath system consisting of surrounding radiation fields, atoms, molecules, or proteins. The bath system is typically modeled by an infinite number of harmonic oscillators. This system-bath model can describe the time-irreversible dynamics through which the system evolves toward a thermal equilibrium state at finite temperature. In nuclear magnetic resonance and atomic spectroscopy, dynamics can be studied easily by using simple quantum master equations under the assumption that the system-bath interaction is weak (perturbative approximation) and the bath fluctuations are very fast (Markovian approximation). However, such approximations cannot be applied in chemical physics and biochemical physics problems, where environmental materials are complex and strongly coupled with environments. The hierarchical equations of motion (HEOM) can describe the numerically "exact" dynamics of a reduced system under nonperturbative and non-Markovian system-bath interactions, which has been verified on the basis of exact analytical solutions (non-Markovian tests) with any desired numerical accuracy. The HEOM theory has been used to treat systems of practical interest, in particular, to account for various linear and nonlinear spectra in molecular and solid state materials, to evaluate charge and exciton transfer rates in biological systems, to simulate resonant tunneling and quantum ratchet processes in nanodevices, and to explore quantum entanglement states in quantum information theories. This article presents an overview of the HEOM theory, focusing on its theoretical background and applications, to help further the development of the study of open quantum dynamics.
Collapse
Affiliation(s)
- Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
24
|
Yan Y, Xing T, Shi Q. A new method to improve the numerical stability of the hierarchical equations of motion for discrete harmonic oscillator modes. J Chem Phys 2020; 153:204109. [DOI: 10.1063/5.0027962] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| | - Tao Xing
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| |
Collapse
|
25
|
Gong H, Wang Y, Zhang HD, Qiao Q, Xu RX, Zheng X, Yan Y. Equilibrium and transient thermodynamics: A unified dissipaton-space approach. J Chem Phys 2020; 153:154111. [PMID: 33092348 DOI: 10.1063/5.0021203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work presents a unified dissipaton-equation-of-motion (DEOM) theory and its evaluations on the Helmholtz free energy change due to the isotherm mixing of two isolated subsystems. One is a local impurity, and the other is a nonlocal Gaussian bath. DEOM constitutes a fundamental theory for such open quantum mixtures. To complete the theory, we also construct the imaginary-time DEOM formalism via an analytical continuation of dissipaton algebra, which would be limited to equilibrium thermodynamics. On the other hand, the real-time DEOM deals with both equilibrium structural and nonequilibrium dynamic properties. Its combination with the thermodynamic integral formalism would be a viable and accurate means to both equilibrium and transient thermodynamics. As illustrations, we report the numerical results on a spin-boson system, with elaborations on the underlying anharmonic features, the thermodynamic entropy vs the von Neumann entropy, and an indication of "solvent-cage" formation. Beside the required asymptotic equilibrium properties, the proposed transient thermodynamics also supports the basic spontaneity criterion.
Collapse
Affiliation(s)
- Hong Gong
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and iChEM and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hou-Dao Zhang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qin Qiao
- Digital Medical Research Center of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Rui-Xue Xu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
26
|
Ullah A, Han L, Yan YA, Zheng X, Yan Y, Chernyak V. Stochastic equation of motion approach to fermionic dissipative dynamics. II. Numerical implementation. J Chem Phys 2020; 152:204106. [DOI: 10.1063/1.5142166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Arif Ullah
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lu Han
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yun-An Yan
- School of Physics and Optoelectronic Engineering, Ludong University, Shandong 264025, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Vladimir Chernyak
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| |
Collapse
|
27
|
Ikeda T, Scholes GD. Generalization of the hierarchical equations of motion theory for efficient calculations with arbitrary correlation functions. J Chem Phys 2020; 152:204101. [DOI: 10.1063/5.0007327] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tatsushi Ikeda
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08544, USA
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08544, USA
| |
Collapse
|
28
|
Han L, Ullah A, Yan YA, Zheng X, Yan Y, Chernyak V. Stochastic equation of motion approach to fermionic dissipative dynamics. I. Formalism. J Chem Phys 2020; 152:204105. [DOI: 10.1063/1.5142164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Lu Han
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Arif Ullah
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yun-An Yan
- School of Physics and Optoelectronic Engineering, Ludong University, Shandong 264025, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale & iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Vladimir Chernyak
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| |
Collapse
|