1
|
Pu R, Yang X, Mu H, Xu Z, He J. Current status and future application of electrically controlled micro/nanorobots in biomedicine. Front Bioeng Biotechnol 2024; 12:1353660. [PMID: 38314349 PMCID: PMC10834684 DOI: 10.3389/fbioe.2024.1353660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Using micro/nanorobots (MNRs) for targeted therapy within the human body is an emerging research direction in biomedical science. These nanoscale to microscale miniature robots possess specificity and precision that are lacking in most traditional treatment modalities. Currently, research on electrically controlled micro/nanorobots is still in its early stages, with researchers primarily focusing on the fabrication and manipulation of these robots to meet complex clinical demands. This review aims to compare the fabrication, powering, and locomotion of various electrically controlled micro/nanorobots, and explore their advantages, disadvantages, and potential applications.
Collapse
Affiliation(s)
- Ruochen Pu
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Xiyu Yang
- Shanghai Bone Tumor Institution, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Mu
- Shanghai Bone Tumor Institution, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonghua Xu
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin He
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Lv Y, Pu R, Tao Y, Yang X, Mu H, Wang H, Sun W. Applications and Future Prospects of Micro/Nanorobots Utilizing Diverse Biological Carriers. MICROMACHINES 2023; 14:mi14050983. [PMID: 37241607 DOI: 10.3390/mi14050983] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Targeted drug delivery using micro-nano robots (MNRs) is a rapidly advancing and promising field in biomedical research. MNRs enable precise delivery of drugs, addressing a wide range of healthcare needs. However, the application of MNRs in vivo is limited by power issues and specificity in different scenarios. Additionally, the controllability and biological safety of MNRs must be considered. To overcome these challenges, researchers have developed bio-hybrid micro-nano motors that offer improved accuracy, effectiveness, and safety for targeted therapies. These bio-hybrid micro-nano motors/robots (BMNRs) use a variety of biological carriers, blending the benefits of artificial materials with the unique features of different biological carriers to create tailored functions for specific needs. This review aims to give an overview of the current progress and application of MNRs with various biocarriers, while exploring the characteristics, advantages, and potential hurdles for future development of these bio-carrier MNRs.
Collapse
Affiliation(s)
- Yu Lv
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ruochen Pu
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yining Tao
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hongsheng Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Sun
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
3
|
Ahmad B, Gauthier M, Laurent GJ, Bolopion A. Mobile Microrobots for In Vitro Biomedical Applications: A Survey. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2021.3085245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Celi N, Gong D, Cai J. Artificial flexible sperm-like nanorobot based on self-assembly and its bidirectional propulsion in precessing magnetic fields. Sci Rep 2021; 11:21728. [PMID: 34741063 PMCID: PMC8571375 DOI: 10.1038/s41598-021-00902-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Abstract
Sperm cells can move at a high speed in biofluids based on the flexible flagella, which inspire novel flagellar micro-/nanorobots to be designed. Despite progress in fabricating sperm-type robots at micro scale, mass fabrication of vivid sperm-like nanorobots with flagellar flexibility is still challenging. In this work, a facile and efficient strategy is proposed to produce flexible sperm-like nanorobots with self-assembled head-to-tail structure, and its bidirectional propulsion property was studied in detail. The nanorobots were composed of a superparamagnetic head and a flexible Au/PPy flagellum, which were covalently linked via biotin-streptavidin bonding with a high yield. Under precessing magnetic fields, the head drove the flexible tail to rotate and generated undulatory bending waves propagating along the body. Bidirectional locomotion was investigated, and moving velocity as well as direction varied with the actuating conditions (field strength, frequency, direction) and the nanorobot's structure (tail length). Effective flagellar propulsion was observed near the substrate and high velocities were attained to move back and forth without U-turn. Typical modelling based on elastohydrodynamics and undulatory wave propagation were utilized for propulsion analysis. This research presents novel artificial flexible sperm-like nanorobots with delicate self-assembled head-to-tail structures and remarkable bidirectional locomotion performances, indicating significant potentials for nanorobotic design and future biomedical application.
Collapse
Affiliation(s)
- Nuoer Celi
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - De Gong
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China. .,Shen Yuan Honors College, Beihang University, Beijing, 100191, China.
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| |
Collapse
|
5
|
Rogowski LW, Zhang X, Tang J, Oxner M, Kim MJ. Flagellated Janus particles for multimodal actuation and transport. BIOMICROFLUIDICS 2021; 15:044104. [PMID: 34504637 PMCID: PMC8407861 DOI: 10.1063/5.0053647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/17/2021] [Indexed: 06/01/2023]
Abstract
Catalytic Janus particles rely on chemical decomposition to self-propel and have displayed enormous potential for targeted drug delivery and cellular penetration. Catalytic propulsion mechanisms are limiting, however, with fuel requirements and specialized fluid properties being necessary to achieve propulsion. We have improved the dynamic propulsion of catalytic Janus particles by functionalizing flagellar filaments to one of their hemispheres. Flagellated Janus particles, torqued by rotating magnetic fields, swim along their rotation axis using the explicit chirality and flexibility of flagella, mimicking flagellar rotation of live bacteria. Depending on the working fluid, flagellated Janus particles can propel using either catalytic or swimming propulsion. We demonstrate experimentally that flagellated Janus particles behave predictably under the two actuation modes and can precisely follow trajectories under closed-loop feedback control. Flagellated Janus particles were demonstrated to swim in both Newtonian and shear-thickening fluids. These are the first Janus particles developed that can be propelled interchangeably between catalytic and flagellar swimming propulsion, allowing two distinct propulsion mechanisms for future use within in vivo operations.
Collapse
Affiliation(s)
| | | | | | | | - Min Jun Kim
- Author to whom correspondence should be addressed:
| |
Collapse
|
6
|
Ham S, Fang WZ, Qiao R. Particle actuation by rotating magnetic fields in microchannels: a numerical study. SOFT MATTER 2021; 17:5590-5601. [PMID: 33998637 DOI: 10.1039/d1sm00127b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetic particles confined in microchannels can be actuated to perform translation motion using a rotating magnetic field, but their actuation in such a situation is not yet well understood. Here, the actuation of a ferromagnetic particle confined in square microchannels is studied using immersed-boundary lattice Boltzmann simulations. In wide channels, when a sphere is positioned close to a side wall but away from channel corners, it experiences a modest hydrodynamic actuation force parallel to the channel walls. This force decreases as the sphere is shifted toward the bottom wall but the opposite trend is found when the channel is narrow. When the sphere is positioned midway between the top and bottom channel walls, the actuation force decreases as the channel width decreases and can reverse its direction. These phenomena are elucidated by studying the flow and pressure fields in the channel-particle system and by analyzing the viscous and pressure components of the hydrodynamic force acting on different parts of the sphere.
Collapse
Affiliation(s)
- Seokgyun Ham
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Wen-Zhen Fang
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Rui Qiao
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| |
Collapse
|
7
|
Bunea AI, Taboryski R. Recent Advances in Microswimmers for Biomedical Applications. MICROMACHINES 2020; 11:E1048. [PMID: 33261101 PMCID: PMC7760273 DOI: 10.3390/mi11121048] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
Microswimmers are a rapidly developing research area attracting enormous attention because of their many potential applications with high societal value. A particularly promising target for cleverly engineered microswimmers is the field of biomedical applications, where many interesting examples have already been reported for e.g., cargo transport and drug delivery, artificial insemination, sensing, indirect manipulation of cells and other microscopic objects, imaging, and microsurgery. Pioneered only two decades ago, research studies on the use of microswimmers in biomedical applications are currently progressing at an incredibly fast pace. Given the recent nature of the research, there are currently no clinically approved microswimmer uses, and it is likely that several years will yet pass before any clinical uses can become a reality. Nevertheless, current research is laying the foundation for clinical translation, as more and more studies explore various strategies for developing biocompatible and biodegradable microswimmers fueled by in vivo-friendly means. The aim of this review is to provide a summary of the reported biomedical applications of microswimmers, with focus on the most recent advances. Finally, the main considerations and challenges for clinical translation and commercialization are discussed.
Collapse
Affiliation(s)
- Ada-Ioana Bunea
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, Ørsted Plads 347, 2800 Lyngby, Denmark;
| | | |
Collapse
|
8
|
Tang J, Rogowski LW, Zhang X, Kim MJ. Flagellar nanorobot with kinetic behavior investigation and 3D motion. NANOSCALE 2020; 12:12154-12164. [PMID: 32490471 DOI: 10.1039/d0nr02496a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wirelessly controlled nanorobots have the potential to perform highly precise maneuvers within complex in vitro and in vivo environments. Flagellar nanorobots will be useful in a variety of biomedical applications, however, to date there has been little effort to investigate essential kinetic behavior changes related to the geometric properties of the nanorobot and effects imparted to it by nearby boundaries. Flagellar nanorobots are composed of an avidin-coated magnetic nanoparticle head (MH) and a single biotin-tipped repolymerized flagellum that are driven by a wirelessly generated rotating magnetic field. Nanorobots with different MHs and flagellar lengths were manually guided to perform complex swimming trajectories under both bright-field and fluorescence microscopy visualizations. The experimental results show that rotational frequency, handedness of rotation direction, MH size, flagellar length, and distance to the bottom boundary significantly affect the kinematics of the nanorobot. The results reported herein summarize fundamental research that will be used for the design specifications necessary for optimizing the application of helical nanorobotic devices for use in delivery of therapeutic and imaging agents. Additionally, robotic nanoswimmers were successfully navigated and tracked in 3D using quantitative defocusing, which will significantly improve the efficiency, function, and application of the flagellar nanorobot.
Collapse
Affiliation(s)
- Jiannan Tang
- Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, TX 75275, USA.
| | - Louis William Rogowski
- Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, TX 75275, USA.
| | - Xiao Zhang
- Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, TX 75275, USA.
| | - Min Jun Kim
- Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, TX 75275, USA.
| |
Collapse
|