1
|
Lanzavecchia G, Sapunova A, Douaki A, Weng S, Momotenko D, Paulo G, Giacomello A, Krahne R, Garoli D. Tailored Fabrication of 3D Nanopores Made of Dielectric Oxides for Multiple Nanoscale Applications. NANO LETTERS 2024; 24:10098-10105. [PMID: 39121066 PMCID: PMC11342934 DOI: 10.1021/acs.nanolett.4c02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 08/11/2024]
Abstract
Solid-state nanopores are a key platform for single-molecule detection and analysis that allow engineering of their properties by controlling size, shape, and chemical functionalization. However, approaches relying on polymers have limits for what concerns hardness, robustness, durability, and refractive index. Nanopores made of oxides with high dielectric constant would overcome such limits and have the potential to extend the suitability of solid-state nanopores toward optoelectronic technologies. Here, we present a versatile method to fabricate three-dimensional nanopores made of different dielectric oxides with convex, straight, and concave shapes and demonstrate their functionality in a series of technologies and applications such as ionic nanochannels, ionic current rectification, memristors, and DNA sensing. Our experimental data are supported by numerical simulations that showcase the effect of different shapes and oxide materials. This approach toward robust and tunable solid-state nanopores can be extended to other 3D shapes and a variety of dielectrics.
Collapse
Affiliation(s)
- German Lanzavecchia
- Optoelectronics, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
- Dipartimento
di Fisica, Università degli Studi
di Genova, Via Dodecaneso
33, 16146, Genova, Italy
| | - Anastasiia Sapunova
- Optoelectronics, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
- Università
degli Studi di Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126, Milano, Italy
| | - Ali Douaki
- Optoelectronics, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Shukun Weng
- Optoelectronics, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
- Università
degli Studi di Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126, Milano, Italy
| | - Dmitry Momotenko
- Institute
of Chemistry, Carl von Ossietzky Universität
Oldenburg, Oldenburg D-26129, Germany
| | - Gonçalo Paulo
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy
| | - Alberto Giacomello
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy
| | - Roman Krahne
- Optoelectronics, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Denis Garoli
- Optoelectronics, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
- Dipartimento
di Scienze e Metodi dell’Ingegneria, Università degli Studi di Modena e Reggio Emilia, Via Amendola 2, 43122, Reggio Emilia, Italy
| |
Collapse
|
2
|
Raja SN, Jain S, Kipen J, Jaldén J, Stemme G, Herland A, Niklaus F. High-bandwidth low-current measurement system for automated and scalable probing of tunnel junctions in liquids. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:074710. [PMID: 39037302 DOI: 10.1063/5.0204188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024]
Abstract
Tunnel junctions have long been used to immobilize and study the electronic transport properties of single molecules. The sensitivity of tunneling currents to entities in the tunneling gap has generated interest in developing electronic biosensors with single molecule resolution. Tunnel junctions can, for example, be used for sensing bound or unbound DNA, RNA, amino acids, and proteins in liquids. However, manufacturing technologies for on-chip integrated arrays of tunnel junction sensors are still in their infancy, and scalable measurement strategies that allow the measurement of large numbers of tunneling junctions are required to facilitate progress. Here, we describe an experimental setup to perform scalable, high-bandwidth (>10 kHz) measurements of low currents (pA-nA) in arrays of on-chip integrated tunnel junctions immersed in various liquid media. Leveraging a commercially available compact 100 kHz bandwidth low-current measurement instrument, we developed a custom two-terminal probe on which the amplifier is directly mounted to decrease parasitic probe capacitances to sub-pF levels. We also integrated a motorized three-axis stage, which could be powered down using software control, inside the Faraday cage of the setup. This enabled automated data acquisition on arrays of tunnel junctions without worsening the noise floor despite being inside the Faraday cage. A deliberately positioned air gap in the fluidic path ensured liquid perfusion to the chip from outside the Faraday cage without coupling in additional noise. We demonstrate the performance of our setup using rapid current switching observed in electromigrated gold tunnel junctions immersed in deionized water.
Collapse
Affiliation(s)
- Shyamprasad N Raja
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Saumey Jain
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
- Division of Nanobiotechnology, SciLife Lab, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Javier Kipen
- Division of Information Science and Engineering, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Joakim Jaldén
- Division of Information Science and Engineering, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Göran Stemme
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Anna Herland
- Division of Nanobiotechnology, SciLife Lab, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, SE-171 77 Solna, Sweden
| | - Frank Niklaus
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|
3
|
Chou L, Grefenstette N, Borges S, Caro T, Catalano E, Harman CE, McKaig J, Raj CG, Trubl G, Young A. Chapter 8: Searching for Life Beyond Earth. ASTROBIOLOGY 2024; 24:S164-S185. [PMID: 38498822 DOI: 10.1089/ast.2021.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The search for life beyond Earth necessitates a rigorous and comprehensive examination of biosignatures, the types of observable imprints that life produces. These imprints and our ability to detect them with advanced instrumentation hold the key to our understanding of the presence and abundance of life in the universe. Biosignatures are the chemical or physical features associated with past or present life and may include the distribution of elements and molecules, alone or in combination, as well as changes in structural components or physical processes that would be distinct from an abiotic background. The scientific and technical strategies used to search for life on other planets include those that can be conducted in situ to planetary bodies and those that could be observed remotely. This chapter discusses numerous strategies that can be employed to look for biosignatures directly on other planetary bodies using robotic exploration including those that have been deployed to other planetary bodies, are currently being developed for flight, or will become a critical technology on future missions. Search strategies for remote observations using current and planned ground-based and space-based telescopes are also described. Evidence from spectral absorption, emission, or transmission features can be used to search for remote biosignatures and technosignatures. Improving our understanding of biosignatures, their production, transformation, and preservation on Earth can enhance our search efforts to detect life on other planets.
Collapse
Affiliation(s)
- Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Georgetown University, Washington, DC, USA
| | - Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | | - Tristan Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Enrico Catalano
- Sant'Anna School of Advanced Studies, The BioRobotics Institute, Pisa, Italy
| | | | - Jordan McKaig
- Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Gareth Trubl
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Amber Young
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
4
|
Wei X, Penkauskas T, Reiner JE, Kennard C, Uline MJ, Wang Q, Li S, Aksimentiev A, Robertson JW, Liu C. Engineering Biological Nanopore Approaches toward Protein Sequencing. ACS NANO 2023; 17:16369-16395. [PMID: 37490313 PMCID: PMC10676712 DOI: 10.1021/acsnano.3c05628] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Biotechnological innovations have vastly improved the capacity to perform large-scale protein studies, while the methods we have for identifying and quantifying individual proteins are still inadequate to perform protein sequencing at the single-molecule level. Nanopore-inspired systems devoted to understanding how single molecules behave have been extensively developed for applications in genome sequencing. These nanopore systems are emerging as prominent tools for protein identification, detection, and analysis, suggesting realistic prospects for novel protein sequencing. This review summarizes recent advances in biological nanopore sensors toward protein sequencing, from the identification of individual amino acids to the controlled translocation of peptides and proteins, with attention focused on device and algorithm development and the delineation of molecular mechanisms with the aid of simulations. Specifically, the review aims to offer recommendations for the advancement of nanopore-based protein sequencing from an engineering perspective, highlighting the need for collaborative efforts across multiple disciplines. These efforts should include chemical conjugation, protein engineering, molecular simulation, machine-learning-assisted identification, and electronic device fabrication to enable practical implementation in real-world scenarios.
Collapse
Affiliation(s)
- Xiaojun Wei
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Tadas Penkauskas
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Celeste Kennard
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
| | - Mark J. Uline
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Sheng Li
- School of Data Science, University of Virginia, Charlottesville, VA 22903, United States
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joseph W.F. Robertson
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
5
|
Xia Z, Scott A, Keneipp R, Chen J, Niedzwiecki DJ, DiPaolo B, Drndić M. Silicon Nitride Nanopores Formed by Simple Chemical Etching: DNA Translocations and TEM Imaging. ACS NANO 2022; 16:18648-18657. [PMID: 36251751 DOI: 10.1021/acsnano.2c07240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We demonstrate DNA translocations through silicon nitride pores formed by simple chemical etching on glass substrates using microscopic amounts of hydrofluoric acid. DNA translocations and transmission electron microscopy (TEM) prove the fabrication of nanopores and allow their characterization. From ionic measurements on 318 chips, we report the effective pore diameters ranging from zero (pristine membranes) and sub-nm to over 100 nm, within 50 μm diameter membranes. The combination of ionic conductance, DNA current blockades, TEM imaging, and electron energy loss spectroscopy (EELS) provides comprehensive information about the pore area and number, from single to few pores, and pore structure. We also show the formation of thinned membrane regions as precursors of pores. The average pore density, about 5 × 10-4 pores/μm2, allows pore number adjustment statistically (0, 1, or more). This simple and affordable chemical method for making solid-state nanopores accelerates their adoption for DNA sensing and characterization applications.
Collapse
Affiliation(s)
- Zehui Xia
- Goeppert LLC, Philadelphia, Pennsylvania 19146, United States
| | - Andre Scott
- Goeppert LLC, Philadelphia, Pennsylvania 19146, United States
| | - Rachael Keneipp
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joshua Chen
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Brian DiPaolo
- Goeppert LLC, Philadelphia, Pennsylvania 19146, United States
| | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Lin CY, Fotis R, Xia Z, Kavetsky K, Chou YC, Niedzwiecki DJ, Biondi M, Thei F, Drndić M. Ultrafast Polymer Dynamics through a Nanopore. NANO LETTERS 2022; 22:8719-8727. [PMID: 36315497 DOI: 10.1021/acs.nanolett.2c03546] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrathin nanopore sensors allow single-molecule and polymer measurements at sub-microsecond time resolution enabled by high current signals (∼10-30 nA). We demonstrate for the first time the experimental probing of the ultrafast translocation and folded dynamics of double-stranded DNA (dsDNA) through a nanopore at 10 MHz bandwidth with acquisition of data points per 25 ns (150 MB/s). By introducing a rigorous algorithm, we are able to accurately identify each current level present within translocation events and elucidate the dynamic folded and unfolded behaviors. The remarkable sensitivity of this system reveals distortions of short-lived folded states at a lower bandwidth. This work revisits probing of dsDNA as a model polymer and develops broadly applicable methods. The combined improvements in sensor signals, instrumentation, and large data analysis methods uncover biomolecular dynamics at unprecedentedly small time scales.
Collapse
Affiliation(s)
- Chih-Yuan Lin
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Riley Fotis
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zehui Xia
- Goeppert LLC, Philadelphia, Pennsylvania 19146, United States
| | - Kyril Kavetsky
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Material Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yung-Chien Chou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Špaček J, Benner SA. Agnostic Life Finder (ALF) for Large-Scale Screening of Martian Life During In Situ Refueling. ASTROBIOLOGY 2022; 22:1255-1263. [PMID: 35796703 DOI: 10.1089/ast.2021.0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Before the first humans depart for Mars in the next decade, hundreds of tons of martian water-ice must be harvested to produce propellant for the return vehicle, a process known as in situ resource utilization (ISRU). We describe here an instrument, the Agnostic Life Finder (ALF), that is an inexpensive life-detection add-on to ISRU. ALF exploits a well-supported view that informational genetic biopolymers in life in water must have two structural features: (1) Informational biopolymers must carry a repeating charge; they must be polyelectrolytes. (2) Their building blocks must fit into an aperiodic crystal structure; the building blocks must be size-shape regular. ALF exploits the first structural feature to extract polyelectrolytes from ∼10 cubic meters of mined martian water by applying a voltage gradient perpendicularly to the water's flow. This gradient diverts polyelectrolytes from the flow toward their respective electrodes (polyanions to the anode, polycations to the cathode), where they are captured in cartridges before they encounter the electrodes. There, they can later be released to analyze their building blocks, for example, by mass spectrometry or nanopore. Upstream, martian cells holding martian informational polyelectrolytes are disrupted by ultrasound. To manage the (unknown) conductivity of the water due to the presence of salts, the mined water is preconditioned by electrodialysis using porous membranes. ALF uses only resources and technology that must already be available for ISRU. Thus, life detection is easily and inexpensively integrated into SpaceX or NASA ISRU missions.
Collapse
Affiliation(s)
- Jan Špaček
- Firebird Biomolecular Sciences, LLC, Alachua, Florida, USA
| | | |
Collapse
|
8
|
Xia Z, Patchin M, McKay CP, Drndić M. Deoxyribonucleic Acid Extraction from Mars Analog Soils and Their Characterization with Solid-State Nanopores. ASTROBIOLOGY 2022; 22:992-1008. [PMID: 35731031 DOI: 10.1089/ast.2021.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Life detection on Mars is an important topic that includes a direct search for biomarkers. This requires instruments for in situ biomarker detection that are compact, lightweight, and able to withstand operations in space. Solid-state nanopores are excellent candidates that allow fast single-molecule detection. They can withstand high temperatures and be sterilized to minimize planetary contamination. The instruments are portable with low-power requirements. We demonstrate a few key results in advancing the use of nanopores for in-space applications. First, we developed modified deoxyribonucleic acid (DNA) extraction protocols to extract DNA from Mars analog soils. Second, we used silicon nitride nanopores to demonstrate the detection of extracted DNA and corresponding current characteristics. The yields and properties of extracted DNA (e.g., estimated diameters) varied somewhat by soil types, extraction methods, and nanopores used. The yields varied from a minimum of 0.9 ng DNA/g soil for a magnesium carbonate sample from Lake Salda to a maximum of 210 ng DNA/g soil for a calcium carbonate sample from Trona Pinnacles. For a given soil type, yields from different methods varied by a factor of up to 50. These observations motivate future studies with a broader range of Mars-like soils and improved instruments to increase signal-to-noise-ratio at higher measurement bandwidths.
Collapse
Affiliation(s)
- Zehui Xia
- Goeppert LLC, Pennovation Works, Philadelphia, Pennsylvania, USA
| | - Margaret Patchin
- Goeppert LLC, Pennovation Works, Philadelphia, Pennsylvania, USA
| | - Christopher P McKay
- Space Science Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Marija Drndić
- David Rittenhouse Laboratory, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Vieira LF, Weinhofer AC, Oltjen WC, Yu C, de Souza Mendes PR, Hore MJA. Combining dynamic Monte Carlo with machine learning to study nanoparticle translocation. SOFT MATTER 2022; 18:5218-5229. [PMID: 35770621 DOI: 10.1039/d2sm00431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Resistive pulse sensing (RPS) measurements of nanoparticle translocation have the ability to provide information on single-particle level characteristics, such as diameter or mobility, as well as ensemble averages. However, interpreting these measurements is complex and requires an understanding of nanoparticle dynamics in confined spaces as well as the ways in which nanoparticles disrupt ion transport while inside a nanopore. Here, we combine Dynamic Monte Carlo (DMC) simulations with Machine Learning (ML) and Poisson-Nernst-Planck calculations to simultaneously simulate nanoparticle dynamics and ion transport during hundreds of independent particle translocations as a function of nanoparticle size, electrophoretic mobility, and nanopore length. The use of DMC simulations allowed us to explicitly investigate the effects of Brownian motion and nanoparticle/nanopore characteristics on the amplitude and duration of translocation signals. Simulation results were verified with experimental RPS measurements and found to be in quantitative agreement.
Collapse
Affiliation(s)
- Luiz Fernando Vieira
- Department of Macromolecular Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, Rio de Janeiro, RJ 22451-900, Brazil
- Instituto Nacional de Tecnologia, Ministry of Science, Technology & Innovation, Av. Venezuela, 82 - Rio de Janeiro, RJ 20081-312, Brazil
| | - Alexandra C Weinhofer
- Department of Macromolecular Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - William C Oltjen
- Department of Macromolecular Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Cindy Yu
- Hathaway Brown School, 19600 North Park Blvd., Shaker Heights, OH 44122, USA
| | - Paulo Roberto de Souza Mendes
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, Rio de Janeiro, RJ 22451-900, Brazil
| | - Michael J A Hore
- Department of Macromolecular Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
10
|
Xia Z, Lin CY, Drndić M. Protein-enabled detection of ibuprofen and sulfamethoxazole using solid-state nanopores. Proteomics 2022; 22:e2100071. [PMID: 34974637 DOI: 10.1002/pmic.202100071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023]
Abstract
Enabled by proteins, we present an all-electrical method for rapid detection of small pharmaceuticals (ibuprofen and sulfamethoxazole [SMZ]) in aqueous media using silicon nitride pores. Specifically, we use carrier proteins, bovine serum albumin (BSA), and take advantage of their interactions with two small drug molecules to form BSA-drug complexes which can be detected by nm-diameter pores, thereby confirming the presence of small pharmaceuticals. We demonstrate detection of ibuprofen and SMZ at concentrations down to 100 nM (∼21 μg/L) and 48.5 nM (12 μg/L), respectively. We observe changes in electrical signal characteristics (reflected in event durations, rates, current magnitudes, and estimated particle diameters) of BSA-drug complexes compared to BSA-only, and differences between these two small pharmaceuticals, possibly paving a path toward developing selective sensors by identifying "electrical fingerprints" of these molecules in the future. These distinct electrical signals are likely a combined result of diffusion, electrophoretic and electroosmotic effects, interactions between the pore and particles, which depend on pore diameters, pH, and the resulting surface charges. The use of single-molecule-counting nanopores allows sensing of small pharmaceuticals, studies of protein conformational changes, and may aid in efforts to evaluate the impact of small drug molecules on aquatic and human life.
Collapse
Affiliation(s)
- Zehui Xia
- Goeppert LLC, Philadelphia, Pennsylvania, USA
| | - Chih-Yuan Lin
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marija Drndić
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Abstract
This paper provides a perspective on potential applications of a new single-molecule technique, viz., the nanopore electro-osmotic trap (NEOtrap). This solid-state nanopore-based method uses locally induced electro-osmosis to form a hydrodynamic trap for single molecules. Ionic current recordings allow one to study an unlabeled protein or nanoparticle of arbitrary charge that can be held in the nanopore's most sensitive region for very long times. After motivating the need for improved single-molecule technologies, we sketch various possible technical extensions and combinations of the NEOtrap. We lay out diverse applications in biosensing, enzymology, protein folding, protein dynamics, fingerprinting of proteins, detecting post-translational modifications, and all that at the level of single proteins - illustrating the unique versatility and potential of the NEOtrap.
Collapse
Affiliation(s)
- Sonja Schmid
- Nanodynamics Lab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, the Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
12
|
Shorkey SA, Du J, Pham R, Strieter ER, Chen M. Real-Time and Label-Free Measurement of Deubiquitinase Activity with a MspA Nanopore. Chembiochem 2021; 22:2688-2692. [PMID: 34060221 PMCID: PMC8416795 DOI: 10.1002/cbic.202100092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/10/2021] [Indexed: 02/06/2023]
Abstract
Covalently attaching ubiquitin (Ub) to cellular proteins as a post-translational modification can result in altered function of modified proteins. Enzymes regulating Ub as a post-translational modification, such as ligases and deubiquitinases, are challenging to characterize in part due to the low throughput of in-vitro assays. Single-molecule nanopore based assays have the advantage of detecting proteins with high specificity and resolution, and in a label-free, real-time fashion. Here we demonstrate the use of a MspA nanopore for discriminating and quantifying Ub proteins. We further applied the MspA pore to measure the Ub-chain disassembly activity of UCH37, a proteasome associated deubiquitinase. The implementation of this MspA system into nanopore arrays could enable high throughput characterizations of unknown deubiquitinases as well as drug screening against disease related enzymes.
Collapse
Affiliation(s)
- Spencer A Shorkey
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jiale Du
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ryan Pham
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Eric R Strieter
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Min Chen
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
13
|
Niedzwiecki DJ, DiPaolo B, Lin CY, Castan A, Keneipp R, Drndić M. Devices for Nanoscale Guiding of DNA through a 2D Nanopore. ACS Sens 2021; 6:2534-2545. [PMID: 34228425 DOI: 10.1021/acssensors.1c00829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We fabricate on-chip solid-state nanofluidic-2D nanopore systems that can limit the range of motion for DNA in the sensing region of a nanopore. We do so by creating devices containing one or more silicon nitride pores and silicon nitride pillars supporting a 2D pore that orient DNA within a nanopore device to a restricted geometry, yet allow the free motion of ions to maintain a high signal-to-noise ratio. We discuss two concepts with two and three independent electrical connections and corresponding nanopore chip device architectures to achieve this goal in practice. Here, we describe device fabrication and transmission electron microscope (TEM) images, and provide simulated translocations based on the finite element analysis in 3D to demonstrate its merit. In both methods, there is a main 2D nanopore which we refer to as a "sensing" nanopore (monolayer MoS2 in this paper). A secondary layer is either an array of guiding pores sharing the same electrode pair as the sensing pore (Method 1) or a single, independently contacted, guiding pore (Method 2). These pores are constructed parallel to the "sensing" pore and serve as "guiding" elements to stretch and feed DNA into the atomically thin sensing pore. We discuss the practical implementation of these concepts with nanofluidic and Si-based technology, including detailed fabrication steps and challenges involved for DNA applications in solution.
Collapse
Affiliation(s)
- David J. Niedzwiecki
- Goeppert LLC, Pennovation, 3401 Grays Ferry Avenue, Philadelphia, Pennsylvania 19146, United States
| | - Brian DiPaolo
- Goeppert LLC, Pennovation, 3401 Grays Ferry Avenue, Philadelphia, Pennsylvania 19146, United States
| | - Chih-Yuan Lin
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Alice Castan
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Rachael Keneipp
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Marija Drndić
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Nanopores: a versatile tool to study protein dynamics. Essays Biochem 2021; 65:93-107. [PMID: 33296461 DOI: 10.1042/ebc20200020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Proteins are the active workhorses in our body. These biomolecules perform all vital cellular functions from DNA replication and general biosynthesis to metabolic signaling and environmental sensing. While static 3D structures are now readily available, observing the functional cycle of proteins - involving conformational changes and interactions - remains very challenging, e.g., due to ensemble averaging. However, time-resolved information is crucial to gain a mechanistic understanding of protein function. Single-molecule techniques such as FRET and force spectroscopies provide answers but can be limited by the required labelling, a narrow time bandwidth, and more. Here, we describe electrical nanopore detection as a tool for probing protein dynamics. With a time bandwidth ranging from microseconds to hours, nanopore experiments cover an exceptionally wide range of timescales that is very relevant for protein function. First, we discuss the working principle of label-free nanopore experiments, various pore designs, instrumentation, and the characteristics of nanopore signals. In the second part, we review a few nanopore experiments that solved research questions in protein science, and we compare nanopores to other single-molecule techniques. We hope to make electrical nanopore sensing more accessible to the biochemical community, and to inspire new creative solutions to resolve a variety of protein dynamics - one molecule at a time.
Collapse
|
15
|
Chou YC, Chen J, Lin CY, Drndić M. Engineering adjustable two-pore devices for parallel ion transport and DNA translocations. J Chem Phys 2021; 154:105102. [PMID: 33722020 PMCID: PMC7952139 DOI: 10.1063/5.0044227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/19/2021] [Indexed: 12/26/2022] Open
Abstract
We report ionic current and double-stranded DNA (dsDNA) translocation measurements through solid-state membranes with two TEM-drilled ∼3-nm diameter silicon nitride nanopores in parallel. Nanopores are fabricated with similar diameters but varying in effective thicknesses (from 2.6 to 10 nm) ranging from a thickness ratio of 1:1 to 1:3.75, producing distinct conductance levels. This was made possible by locally thinning the silicon nitride membrane to shape the desired topography with nanoscale precision using electron beam lithography (EBL). Two nanopores are engineered and subsequently drilled in either the EBL-thinned or the surrounding membrane region. By designing the interpore separation a few orders of magnitude larger than the pore diameter (e.g., ∼900 vs 3 nm), we show analytically, numerically, and experimentally that the total conductance of the two pores is the sum of the individual pore conductances. For a two-pore device with similar diameters yet thicknesses in the ratio of 1:3, a ratio of ∼1:2.2 in open-pore conductances and translocation current signals is expected, as if they were measured independently. Introducing dsDNA as analytes to both pores simultaneously, we detect more than 12 000 events within 2 min and trace them back with a high likelihood to which pore the dsDNA translocated through. Moreover, we monitor translocations through one active pore only when the other pore is clogged. This work demonstrates how two-pore devices can fundamentally open up a parallel translocation reading system for solid-state nanopores. This approach could be creatively generalized to more pores with desired parameters given a sufficient signal-to-noise ratio.
Collapse
Affiliation(s)
- Yung-Chien Chou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joshua Chen
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chih-Yuan Lin
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|