1
|
Wang K, Xu Y, Xie X, Ma H. Theoretical investigation of distal charge separation in a perylenediimide trimer. J Chem Phys 2024; 160:164303. [PMID: 38647303 DOI: 10.1063/5.0205671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
An exciton-phonon (ex-ph) model based on our recently developed block interaction product basis framework is introduced to simulate the distal charge separation (CS) process in aggregated perylenediimide (PDI) trimer incorporating the quantum dynamic method, i.e., the time-dependent density matrix renormalization group. The electronic Hamiltonian in the ex-ph model is represented by nine constructed diabatic states, which include three local excited (LE) states and six charge transfer (CT) states from both the neighboring and distal chromophores. These diabatic states are automatically generated from the direct products of the leading localized neutral or ionic states of each chromophore's reduced density matrix, which are obtained from ab initio quantum chemical calculation of the subsystem consisting of the targeted chromophore and its nearest neighbors, thus considering the interaction of the adjacent environment. In order to quantum-dynamically simulate the distal CS process with massive coupled vibrational modes in molecular aggregates, we used our recently proposed hierarchical mapping approach to renormalize these modes and truncate those vibrational modes that are not effectively coupled with electronic states accordingly. The simulation result demonstrates that the formation of the distal CS process undergoes an intermediate state of adjacent CT, i.e., starts from the LE states, passes through an adjacent CT state to generate the intermediates (∼200 fs), and then formalizes the targeted distal CS via further charge transference (∼1 ps). This finding agrees well with the results observed in the experiment, indicating that our scheme is capable of quantitatively investigating the CS process in a realistic aggregated PDI trimer and can also be potentially applied to exploring CS and other photoinduced processes in larger systems.
Collapse
Affiliation(s)
- Ke Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoyu Xie
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
2
|
Park JY, Song R, Liang J, Jin L, Wang K, Li S, Shi E, Gao Y, Zeller M, Teat SJ, Guo P, Huang L, Zhao YS, Blum V, Dou L. Thickness control of organic semiconductor-incorporated perovskites. Nat Chem 2023; 15:1745-1753. [PMID: 37653228 DOI: 10.1038/s41557-023-01311-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/31/2023] [Indexed: 09/02/2023]
Abstract
Two-dimensional organic semiconductor-incorporated perovskites are a promising family of hybrid materials for optoelectronic applications, owing in part to their inherent quantum well architecture. Tuning their structures and properties for specific properties, however, has remained challenging. Here we report a general method to tune the dimensionality of phase-pure organic semiconductor-incorporated perovskite single crystals during their synthesis, by judicious choice of solvent. The length of the conjugated semiconducting organic cations and the dimensionality (n value) of the inorganic layers can be manipulated at the same time. The energy band offsets and exciton dynamics at the organic-inorganic interfaces can therefore be precisely controlled. Furthermore, we show that longer and more planar π-conjugated organic cations induce a more rigid inorganic crystal lattice, which leads to suppressed exciton-phonon interactions and better optoelectronic properties as compared to conventional two-dimensional perovskites. As a demonstration, optically driven lasing behaviour with substantially lower lasing thresholds was realized.
Collapse
Affiliation(s)
- Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Ruyi Song
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Jie Liang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Linrui Jin
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Kang Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
| | - Enzheng Shi
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, China
| | - Yao Gao
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Volker Blum
- Department of Chemistry, Duke University, Durham, NC, USA.
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Sorour MI, Marcus AH, Matsika S. Unravelling the Origin of the Vibronic Spectral Signatures in an Excitonically Coupled Indocarbocyanine Cy3 Dimer. J Phys Chem A 2023; 127:9530-9540. [PMID: 37934679 PMCID: PMC10774018 DOI: 10.1021/acs.jpca.3c06090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The indocarbocyanine Cy3 dye is widely used to probe the dynamics of proteins and DNA. Excitonically coupled Cy3 dimers exhibit very unique spectral signatures that depend on the interchromophoric geometrical orientation induced by the environment, making them powerful tools to infer the dynamics of their surroundings. Understanding the origin of the dimeric spectral signatures is a necessity for an accurate interpretation of the experimental results. In this work, we simulate the vibronic spectrum of an experimentally well-studied Cy3 dimer, and we explain the origin of the experimental signatures present in its linear absorption spectrum. The Franck-Condon harmonic approximations, among other tests, are used to probe the factors contributing to the spectrum. It is found that the first peak in the absorption spectrum originates from the lower energy excitonic state, while the next two peaks are vibrational progressions of the higher energy excitonic state. The polar solvent plays a crucial role in the appearance of the spectrum, being responsible for the localized S1 minimum, which results in an increased intensity of the first peak.
Collapse
Affiliation(s)
- Mohammed I Sorour
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Andrew H Marcus
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
4
|
Ghosh R, Paesani F. Connecting the dots for fundamental understanding of structure-photophysics-property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chem Sci 2023; 14:1040-1064. [PMID: 36756323 PMCID: PMC9891456 DOI: 10.1039/d2sc03793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Photoactive organic and hybrid organic-inorganic materials such as conjugated polymers, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and layered perovskites, display intriguing photophysical signatures upon interaction with light. Elucidating structure-photophysics-property relationships across a broad range of functional materials is nontrivial and requires our fundamental understanding of the intricate interplay among excitons (electron-hole pair), polarons (charges), bipolarons, phonons (vibrations), inter-layer stacking interactions, and different forms of structural and conformational defects. In parallel with electronic structure modeling and data-driven science that are actively pursued to successfully accelerate materials discovery, an accurate, computationally inexpensive, and physically-motivated theoretical model, which consistently makes quantitative connections with conceptually complicated experimental observations, is equally important. Within this context, the first part of this perspective highlights a unified theoretical framework in which the electronic coupling as well as the local coupling between the electronic and nuclear degrees of freedom can be efficiently described for a broad range of quasiparticles with similarly structured Holstein-style vibronic Hamiltonians. The second part of this perspective discusses excitonic and polaronic photophysical signatures in polymers, COFs, MOFs, and perovskites, and attempts to bridge the gap between different research fields using a common theoretical construct - the Multiparticle Holstein Formalism. We envision that the synergistic integration of state-of-the-art computational approaches with the Multiparticle Holstein Formalism will help identify and establish new, transformative design strategies that will guide the synthesis and characterization of next-generation energy materials optimized for a broad range of optoelectronic, spintronic, and photonic applications.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
- San Diego Supercomputer Center, University of California La Jolla San Diego California 92093 USA
- Materials Science and Engineering, University of California La Jolla San Diego California 92093 USA
| |
Collapse
|
5
|
Steger M, Janke SM, Sercel PC, Larson BW, Lu H, Qin X, Yu VWZ, Blum V, Blackburn JL. On the optical anisotropy in 2D metal-halide perovskites. NANOSCALE 2022; 14:752-765. [PMID: 34940772 DOI: 10.1039/d1nr06899g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Two-dimensional metal-halide perovskites (MHPs) are versatile solution-processed organic/inorganic quantum wells where the structural anisotropy creates profound anisotropy in their electronic and excitonic properties and associated optical constants. We here employ a wholistic framework, based on semiempirical modeling (k·p/effective mass theory calculations) informed by hybrid density functional theory (DFT) and multimodal spectroscopic ellipsometry on (C6H5(CH2)2NH3)2PbI4 films and crystals, that allows us to link the observed optical properties and anisotropy precisely to the underlying physical parameters that shape the electronic structure of a layered MHP. We find substantial frequency-dependent anisotropy in the optical constants and close correspondence between experiment and theory, demonstrating a high degree of in-plane alignment of the two-dimensional planes in both spin-coated thin films and cleaved single crystals made in this study. Hybrid DFT results elucidate the degree to which organic and inorganic frontier orbitals contribute to optical transitions polarized along a particular axis. The combined experimental and theoretical approach enables us to estimate the fundamental electronic bandgap of 2.65-2.68 eV in this prototypical 2D perovskite and to determine the spin-orbit coupling (ΔSO = 1.20 eV) and effective crystal field (δ = -1.36 eV) which break the degeneracy of the frontier conduction band states and determine the exciton fine structure. The methods and results described here afford a better understanding of the connection between structure and induced optical anisotropy in quantum-confined MHPs, an important structure-property relationship for optoelectronic applications and devices.
Collapse
Affiliation(s)
- Mark Steger
- National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | - Svenja M Janke
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Institute of Advanced Study, University of Warwick, CV4 7AL Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Peter C Sercel
- Center for Hybrid Organic Inorganic Semiconductors for Energy, Golden, CO, 80401, USA
| | - Bryon W Larson
- National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | - Haipeng Lu
- National Renewable Energy Laboratory, Golden, CO 80401, USA.
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Xixi Qin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Victor Wen-Zhe Yu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Volker Blum
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
6
|
Sorour MI, Kistler KA, Marcus AH, Matsika S. Accurate Modeling of Excitonic Coupling in Cyanine Dye Cy3. J Phys Chem A 2021; 125:7852-7866. [PMID: 34494437 DOI: 10.1021/acs.jpca.1c05556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accurate modeling of excitonic coupling in molecules is of great importance for inferring the structures and dynamics of coupled systems. Cy3 is a cyanine dye that is widely used in molecular spectroscopy. Its well-separated excitation bands, high sensitivity to the surroundings, and the high energy transfer efficiency make it a perfect choice for excitonic coupling experiments. Many methods have been used to model the excitonic coupling in molecules with varying degrees of accuracy. The atomic transition charge model offers a high-accuracy and cost-effective way to calculating the excitonic coupling. The main focus of this work is to generate high-quality atomic transition charges that can accurately model the Cy3 dye's transition density. The transition density of the excitation of the ground to first excited state is calculated using configuration-interaction singles and time-dependent density functional theory and is benchmarked against the algebraic diagrammatic construction method. Using the transition density we derived the atomic transition charges using two approaches: Mulliken population analysis and charges fitted to the transition electrostatic potential. The quality of the charges is examined, and their ability to accurately calculate the excitonic coupling is assessed via comparison to experimental data of an artificial biscyanine construct. Theoretical comparisons to the supermolecule ab initio couplings and the widely used point-dipole approximation are also made. Results show that using the transition electrostatic potential is a reliable approach for generating the transition atomic charges. A high-quality set of charges, that can be used to model the Cy3 dye dimer excitonic coupling with high-accuracy and a reasonable computational cost, is obtained.
Collapse
Affiliation(s)
- Mohammed I Sorour
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Kurt A Kistler
- Department of Chemistry, Brandywine Campus, The Pennsylvania State University, Media, Pennsylvania 19063, United States
| | - Andrew H Marcus
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|