1
|
Chen Z, Zheng J, Truhlar DG, Yang Y. Constrained Nuclear-Electronic Orbital Transition State Theory Using Energy Surfaces with Nuclear Quantum Effects. J Chem Theory Comput 2025. [PMID: 39772546 DOI: 10.1021/acs.jctc.4c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Hydrogen-atom transfer is crucial in a myriad of chemical and biological processes, yet the accurate and efficient description of hydrogen-atom transfer reactions and kinetic isotope effects remains challenging due to significant quantum effects on hydrogenic motion, especially tunneling and zero-point energy. In this paper, we combine transition state theory (TST) with the recently developed constrained nuclear-electronic orbital (CNEO) theory to propose a new transition state theory denoted CNEO-TST. We use CNEO-TST with CNEO density functional theory (CNEO-DFT) to predict reaction rate constants for two prototypical gas-phase hydrogen-atom transfer reactions and their deuterated isotopologic reactions. CNEO-TST is similar to conventional TST except that it employs constrained minimized energy surfaces to include zero-point energy and shallow tunneling effects in the effective potential. We find that the new theory predicts reaction rates quite accurately at room temperature. The effective potential surface must be generated by CNEO theory rather than by ordinary electronic structure theory, but because of the favorable computational scaling of CNEO-DFT, the cost is economical even for large systems. Our results show that dynamics calculations with this approach achieve accuracy comparable to variational TST with a semiclassical multidimensional tunneling transmission coefficient at and above room temperature. Therefore, CNEO-TST can be a useful tool for rate prediction, even for reactions involving highly quantal motion, such as many chemical and biochemical reactions involving transfers of hydrogen atoms, protons, or hydride ions.
Collapse
Affiliation(s)
- Zehua Chen
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jingjing Zheng
- Gaussian, Inc., Wallingford, Connecticut 06492, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yang Yang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Yang Y, Zhang Y, Yang Y, Xu X. Assessment of electron-proton correlation functionals for vibrational spectra of shared-proton systems by constrained nuclear-electronic orbital density functional theory. J Chem Phys 2024; 161:244103. [PMID: 39713995 DOI: 10.1063/5.0243086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/29/2024] [Indexed: 12/24/2024] Open
Abstract
Proton transfer plays a crucial role in various chemical and biological processes. A major theoretical challenge in simulating proton transfer arises from the quantum nature of the proton. The constrained nuclear-electronic orbital (CNEO) framework was recently developed to efficiently and accurately account for nuclear quantum effects, particularly quantum nuclear delocalization effects, in quantum chemistry calculations and molecular dynamics simulations. In this paper, we systematically investigate challenging proton transfer modes in a series of shared-proton systems using CNEO density functional theory (CNEO-DFT), focusing on evaluating existing electron-proton correlation functionals. Our results show that CNEO-DFT accurately describes proton transfer vibrational modes and significantly outperforms conventional DFT. The inclusion of the epc17-2 electron-proton correlation functional in CNEO-DFT produces similar performance to that without electron-proton correlations, while the epc17-1 functional yields less accurate results, comparable with conventional DFT. These findings hold true for both asymmetrical and symmetrical shared-proton systems. Therefore, until a more accurate electron-proton correlation functional is developed, we currently recommend performing vibrational spectrum calculations using CNEO-DFT without electron-proton correlation functionals.
Collapse
Affiliation(s)
- Yuzhuo Yang
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yuzhe Zhang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yang Yang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xi Xu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
3
|
Hasecke L, Mata RA. Local Electronic Correlation in Multicomponent Møller-Plesset Perturbation Theory. J Chem Theory Comput 2024; 20:9928-9938. [PMID: 39514695 PMCID: PMC11603598 DOI: 10.1021/acs.jctc.4c01059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
We present in this contribution the first application of local correlation in the context of multicomponent methods. Multicomponent approaches allow for the targeted simulation of electrons together with other Fermions (most commonly protons) as quantum particles. These methods have become increasingly popular over the last years, particularly for the description of nuclear quantum effects (in strong hydrogen bonds, proton tunneling, and many more). However, most implementations are still based on canonical formulations of wave function theory, which we know for decades to be computationally inefficient for capturing dynamical correlation effects. Local correlation approaches, particularly with the use of pair natural orbitals (PNOs), enable asymptotically linear scaling of computational costs with very little impact on the overall accuracy. In this context, the efficient use of density fitting approximations in the integral calculation proves essential. We start by discussing our implementation of density-fitted NEO-MP2 and NEO-PNO-LMP2, upgrading the electronic correlation treatment up to PNO local coupled cluster level of theory. Several challenging examples are provided to benchmark the method in terms of accuracy as well as computational cost scaling. Following appropriate protocols, anharmonic corrections to localized X-H stretches can be applied routinely with little computational overhead.
Collapse
Affiliation(s)
- Lukas Hasecke
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Ricardo A. Mata
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Hasecke L, Mata RA. Optimization of Quantum Nuclei Positions with the Adaptive Nuclear-Electronic Orbital Approach. J Phys Chem A 2024; 128:3205-3211. [PMID: 38619054 PMCID: PMC11056972 DOI: 10.1021/acs.jpca.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024]
Abstract
The use of multicomponent methods has become increasingly popular over the last years. Under this framework, nuclei (commonly protons) are treated quantum mechanically on the same footing as the electronic structure problem. Under the use of atomic-centered orbitals, this can lead to some complications as the ideal location of the nuclear basis centers must be optimized. In this contribution, we propose a straightforward approach to determine the position of such centers within the self-consistent cycle of a multicomponent calculation, making use of individual proton charge centroids. We test the method on model systems including the water dimer, a protonated water tetramer, and a porphine system. Comparing to numerical gradient calculations, the adaptive nuclear-electronic orbital (NEO) procedure is able to converge the basis centers to within a few cents of an Ångström and with less than 0.1 kcal/mol differences in absolute energies. This is achieved in one single calculation and with a small added computational effort of up to 80% compared to a regular NEO- self-consistent field run. An example application for the human transketolase proton wire is also provided.
Collapse
Affiliation(s)
- Lukas Hasecke
- Institute of Physical Chemistry, University
of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Ricardo A. Mata
- Institute of Physical Chemistry, University
of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Finney JM, McCoy AB. Correlations between the Structures and Spectra of Protonated Water Clusters. J Phys Chem A 2024; 128:868-879. [PMID: 38265889 DOI: 10.1021/acs.jpca.3c07338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Badger's rule-like correlations between OH stretching frequencies and intensities and the OH bond length are used to develop a spectral mapping procedure for studies of pure and protonated water clusters. This approach utilizes the vibrationally averaged OH bond lengths, which were obtained from diffusion Monte Carlo simulations that were performed using the general potential developed by Yu and Bowman. Good agreement is achieved between the spectra obtained using this approach and previously reported spectra for H+(H2O)n clusters, with n = 3, 4, and 5, as well as their perdeuterated analogues. The analysis of the spectra obtained by this spectral mapping approach supports previous work that assigned the spectrum of H+(H2O)6 to a mixture of Eigen and Zundel-like structures. Analysis of the calculated spectra also suggests a reassignment of the frequency of one of the transitions that involves the OH stretching vibration of the OH bonds in the hydronium core in the Eigen-like structure of H+(H2O)6 from 1917 cm-1 to roughly 2100 cm-1. For D+(D2O)6, comparison of the measured spectrum to those obtained by using the spectral mapping approach suggests that the carrier of the measured spectrum is one or more of the isomers of D+(D2O)6 that contain a four-membered ring and two flanking water molecules. While there are several candidate structures, the two flanking water molecules most likely form a chain that is bound to the hydronium core.
Collapse
Affiliation(s)
- Jacob M Finney
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Li TE, Paenurk E, Hammes-Schiffer S. Squeezed Protons and Infrared Plasmonic Resonance Energy Transfer. J Phys Chem Lett 2024; 15:751-757. [PMID: 38226772 DOI: 10.1021/acs.jpclett.3c03112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Unusual nuclear quantum effects may emerge near noble metal nanostructures such as squeezed vibrational states in molecular junctions and plasmonic resonance energy transfer in the infrared domain. Herein, nuclear quantum effects near heavy metals are studied by nuclear-electronic orbital density functional theory (NEO-DFT) with an effective core potential. For a quantum proton sandwiched between a pair of gold tips modeled by two Au6 clusters, NEO-DFT calculations suggest that the quantum proton density can be squeezed as the tip distance decreases. For an HF molecule placed near a one-dimensional Au nanowire composed of up to 34 Au atoms, real-time NEO time-dependent density functional theory (RT-NEO-TDDFT) shows that the infrared plasmonic motion within the Au nanowire may resonantly transfer electronic energy to the HF proton vibrational stretch mode. Overall, these calculations illustrate the advantages of the NEO approach for probing nuclear quantum effects, such as squeezed proton vibrational states and infrared plasmonic resonance energy transfer.
Collapse
Affiliation(s)
- Tao E Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Eno Paenurk
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
7
|
Zhang Y, Wang Y, Xu X, Chen Z, Yang Y. Vibrational Spectra of Highly Anharmonic Water Clusters: Molecular Dynamics and Harmonic Analysis Revisited with Constrained Nuclear-Electronic Orbital Methods. J Chem Theory Comput 2023; 19:9358-9368. [PMID: 38096546 DOI: 10.1021/acs.jctc.3c01037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Vibrational spectroscopy is widely used to gain insights into structural and dynamic properties of chemical, biological, and materials systems. Thus, an efficient and accurate method to simulate vibrational spectra is desired. In this paper, we justify and employ a microcanonical molecular simulation scheme to calculate the vibrational spectra of three challenging water clusters: the neutral water dimer (H4O2), the protonated water trimer (H7O3+), and the protonated water tetramer (H9O4+). We find that with the accurate description of quantum nuclear delocalization effects through the constrained nuclear-electronic orbital framework, including vibrational mode coupling effects through molecular dynamics simulations can additionally improve the vibrational spectrum calculations. In contrast, without the quantum nuclear delocalization picture, conventional ab initio molecular dynamics may even lead to less accurate results than harmonic analysis.
Collapse
Affiliation(s)
- Yuzhe Zhang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yiwen Wang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Xi Xu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Zehua Chen
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yang Yang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Hasecke L, Mata RA. Nuclear Quantum Effects Made Accessible: Local Density Fitting in Multicomponent Methods. J Chem Theory Comput 2023; 19:8223-8233. [PMID: 37920900 PMCID: PMC10687858 DOI: 10.1021/acs.jctc.3c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
The simulation of nuclear quantum effects (NQEs) is crucial for an accurate description of systems and processes involving light nuclei, such as hydrogen atoms. Within the last years, the importance of those effects has been highlighted for a vast range of systems with tremendous implications in chemistry, biology, physics, and materials sciences. However, while electronic structure theory methods have become routine tools for quantum chemical investigations, there is still a lack of approaches to address NQEs that are computationally accessible and straightforward to use. To address this, we present the first combination of the nuclear-electronic orbital Hartree-Fock approach with both local and density fitting approximations (LDF-NEO-HF). This results in a low-order scaling approach that enables the inclusion of NQEs for large systems within a fraction of a day and for small to medium size systems in minutes. Moreover, we demonstrate the qualitative accuracy and robustness of our approach to retrieve NQEs for three real-use cases motivated by chemical, biological, and materials science applications.
Collapse
Affiliation(s)
- Lukas Hasecke
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Ricardo A. Mata
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Chow M, Li TE, Hammes-Schiffer S. Nuclear-Electronic Orbital Quantum Mechanical/Molecular Mechanical Real-Time Dynamics. J Phys Chem Lett 2023; 14:9556-9562. [PMID: 37857272 PMCID: PMC11401051 DOI: 10.1021/acs.jpclett.3c02275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Simulating the nuclear-electronic quantum dynamics of large-scale molecular systems in the condensed phase is key for studying biologically and chemically important processes such as proton transfer and proton-coupled electron transfer reactions. Herein, the real-time nuclear-electronic orbital time-dependent density functional theory (RT-NEO-TDDFT) approach is combined with a hybrid quantum mechanical/molecular mechanical (QM/MM) strategy to enable the accurate description of coupled nuclear-electronic quantum dynamics in the presence of heterogeneous environments such as solvent or proteins. The densities of the electrons and quantum protons are propagated in real time, while the other nuclei are propagated classically on the instantaneous electron-proton vibronic surface. This approach is applied to phenol bound to lysozyme, intramolecular proton transfer in malonaldehyde, and nonequilibrium excited-state intramolecular proton transfer in o-hydroxybenzaldehyde. These examples illustrate that the RT-NEO-TDDFT framework, coupled with an atomistic representation of the environment, allows the simulation of condensed-phase systems that exhibit significant nuclear quantum effects.
Collapse
Affiliation(s)
- Mathew Chow
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Tao E Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
10
|
Xu X. Constrained Nuclear-Electronic Orbital Density Functional Theory with a Dielectric Continuum Solvent Model. J Phys Chem A 2023. [PMID: 37470267 DOI: 10.1021/acs.jpca.3c02507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Solvent effects are crucial for simulating chemical and biological processes in solutions. The continuum solvation model is widely used for incorporating solvent effects with different levels of theoretical descriptions of solutes. For solutes and solutions containing hydrogen atoms, nuclear quantum effects can also be nonnegligible for reliable simulations. In this work, we couple our recently developed constrained nuclear-electronic orbital density functional theory with a dielectric continuum solvation model to cover nuclear quantum effects and solvent effects simultaneously. This approach is applied to the formate ion, where an anomalous solvatochromic shift in C-H stretch frequency was reported in experiments. By using this new approach to account for nuclear quantum effects and solvent effects, we show that the vibrational frequency of the C-H stretch and the solvatochromic shift are accurately described.
Collapse
Affiliation(s)
- Xi Xu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
11
|
Wang Y, Chen Z, Yang Y. Calculating Vibrational Excited State Absorptions with Excited State Constrained Minimized Energy Surfaces. J Phys Chem A 2023. [PMID: 37335973 DOI: 10.1021/acs.jpca.3c01420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The modeling and interpretation of vibrational spectra are crucial for studying reaction dynamics using vibrational spectroscopy. Most prior theoretical developments focused on describing fundamental vibrational transitions while fewer developments focused on vibrational excited state absorptions. In this study, we present a new method that uses excited state constrained minimized energy surfaces (CMESs) to describe vibrational excited state absorptions. The excited state CMESs are obtained similarly to the previous ground state CMES development in our group but with additional wave function orthogonality constraints. Using a series of model systems, including the harmonic oscillator, Morse potential, double-well potential, quartic potential, and two-dimensional anharmonic potential, we demonstrate that this new procedure provides good estimations of the transition frequencies for vibrational excited state absorptions. These results are significantly better than those obtained from harmonic approximations using conventional potential energy surfaces, demonstrating the promise of excited state CMES-based methods for calculating vibrational excited state absorptions in real systems.
Collapse
Affiliation(s)
- Yiwen Wang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Zehua Chen
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yang Yang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Li TE, Hammes-Schiffer S. Electronic Born-Oppenheimer approximation in nuclear-electronic orbital dynamics. J Chem Phys 2023; 158:114118. [PMID: 36948810 DOI: 10.1063/5.0142007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Within the nuclear-electronic orbital (NEO) framework, the real-time NEO time-dependent density functional theory (RT-NEO-TDDFT) approach enables the simulation of coupled electronic-nuclear dynamics. In this approach, the electrons and quantum nuclei are propagated in time on the same footing. A relatively small time step is required to propagate the much faster electronic dynamics, thereby prohibiting the simulation of long-time nuclear quantum dynamics. Herein, the electronic Born-Oppenheimer (BO) approximation within the NEO framework is presented. In this approach, the electronic density is quenched to the ground state at each time step, and the real-time nuclear quantum dynamics is propagated on an instantaneous electronic ground state defined by both the classical nuclear geometry and the nonequilibrium quantum nuclear density. Because the electronic dynamics is no longer propagated, this approximation enables the use of an order-of-magnitude larger time step, thus greatly reducing the computational cost. Moreover, invoking the electronic BO approximation also fixes the unphysical asymmetric Rabi splitting observed in previous semiclassical RT-NEO-TDDFT simulations of vibrational polaritons even for small Rabi splitting, instead yielding a stable, symmetric Rabi splitting. For the intramolecular proton transfer in malonaldehyde, both RT-NEO-Ehrenfest dynamics and its BO counterpart can describe proton delocalization during the real-time nuclear quantum dynamics. Thus, the BO RT-NEO approach provides the foundation for a wide range of chemical and biological applications.
Collapse
Affiliation(s)
- Tao E Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
13
|
Culpitt T, Peters LDM, Tellgren EI, Helgaker T. Time-dependent nuclear-electronic orbital Hartree-Fock theory in a strong uniform magnetic field. J Chem Phys 2023; 158:114115. [PMID: 36948801 DOI: 10.1063/5.0139675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
In an ultrastrong magnetic field, with field strength B ≈ B0 = 2.35 × 105 T, molecular structure and dynamics differ strongly from that observed on the Earth. Within the Born-Oppenheimer (BO) approximation, for example, frequent (near) crossings of electronic energy surfaces are induced by the field, suggesting that nonadiabatic phenomena and processes may play a more important role in this mixed-field regime than in the weak-field regime on Earth. To understand the chemistry in the mixed regime, it therefore becomes important to explore non-BO methods. In this work, the nuclear-electronic orbital (NEO) method is employed to study protonic vibrational excitation energies in the presence of a strong magnetic field. The NEO generalized Hartree-Fock theory and time-dependent Hartree-Fock (TDHF) theory are derived and implemented, accounting for all terms that result as a consequence of the nonperturbative treatment of molecular systems in a magnetic field. The NEO results for HCN and FHF- with clamped heavy nuclei are compared against the quadratic eigenvalue problem. Each molecule has three semi-classical modes owing to the hydrogen-two precession modes that are degenerate in the absence of a field and one stretching mode. The NEO-TDHF model is found to perform well; in particular, it automatically captures the screening effects of the electrons on the nuclei, which are quantified through the difference in energy of the precession modes.
Collapse
Affiliation(s)
- Tanner Culpitt
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Laurens D M Peters
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Erik I Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
14
|
Chen Z, Yang Y. Incorporating Nuclear Quantum Effects in Molecular Dynamics with a Constrained Minimized Energy Surface. J Phys Chem Lett 2023; 14:279-286. [PMID: 36595586 DOI: 10.1021/acs.jpclett.2c02905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The accurate incorporation of nuclear quantum effects in large-scale molecular dynamics (MD) simulations remains a significant challenge. Recently, we combined constrained nuclear-electronic orbital (CNEO) theory with classical MD and obtained a new approach (CNEO-MD) that can accurately and efficiently incorporate nuclear quantum effects into classical simulations. In this Letter, we provide the theoretical foundation for CNEO-MD by developing an alternative formulation of the equations of motion for MD. In this new formulation, the expectation values of quantum nuclear positions evolve classically on an effective energy surface that is obtained from a constrained energy minimization procedure when solving for the quantum nuclear wave function, thus enabling the incorporation of nuclear quantum effects in classical MD simulations. For comparison with other existing approaches, we examined a series of model systems and found that this new MD approach is significantly more accurate than the conventional way of performing classical MD and generally outperforms centroid MD and ring-polymer MD in describing vibrations in these model systems.
Collapse
Affiliation(s)
- Zehua Chen
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin53706, United States
| | - Yang Yang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin53706, United States
| |
Collapse
|
15
|
Fowler D, Brorsen KR. (T) Correction for Multicomponent Coupled-Cluster Theory for a Single Quantum Proton. J Chem Theory Comput 2022; 18:7298-7305. [PMID: 36417554 DOI: 10.1021/acs.jctc.2c00701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
(T) and [T] perturbative corrections are derived for multicomponent coupled-cluster theory with single and double excitations (CCSD). Benchmarking for systems with a single quantum proton shows that multicomponent CCSD methods that include perturbative corrections are more accurate than multicomponent CCSD for the calculation of proton affinities and absolute energies. An approximation is introduced that includes only (T) or [T] contributions from mixed electron-nuclear excitations.
Collapse
Affiliation(s)
- Dylan Fowler
- Department of Chemistry, University of Missouri, Columbia, Missouri65203, United States
| | - Kurt R Brorsen
- Department of Chemistry, University of Missouri, Columbia, Missouri65203, United States
| |
Collapse
|
16
|
Xu J, Zhou R, Tao Z, Malbon C, Blum V, Hammes-Schiffer S, Kanai Y. Nuclear-Electronic Orbital Approach to Quantization of Protons in Periodic Electronic Structure Calculations. J Chem Phys 2022; 156:224111. [DOI: 10.1063/5.0088427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nuclear-electronic orbital (NEO) method is a well-established approach for treating nuclei quantum mechanically in molecular systems beyond the usual Born-Oppenheimer approximation. In this work, we present a strategy to implement the NEO method for periodic electronic structure calculations, particularly focused on multicomponent density functional theory (DFT). The NEO-DFT method is implemented in an all-electron electronic structure code, FHI-aims, using a combination of analytical and numerical integration techniques as well as a resolution of the identity scheme to enhance computational efficiency. After validating this implementation, proof-of-concept applications are presented to illustrate the effects of quantized protons on the physical properties of extended systems such as two-dimensional materials and liquid-semiconductor interfaces. Specifically, periodic NEO-DFT calculations are performed for a trans-polyacetylene chain, a hydrogen boride sheet, and a titanium oxide-water interface. The zero-point energy effects of the protons, as well as electron-proton correlation, are shown to noticeably impact the density of states and band structures for these systems. These developments provide a foundation for the application of multicomponent DFT to a wide range of other extended condensed matter systems.
Collapse
Affiliation(s)
- Jianhang Xu
- Chemistry, The University of North Carolina at Chapel Hill, United States of America
| | | | - Zhen Tao
- Yale University, United States of America
| | | | - Volker Blum
- Duke University Department of Mechanical Engineering and Materials Science, United States of America
| | | | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
17
|
Xu X, Chen Z, Yang Y. Molecular Dynamics with Constrained Nuclear Electronic Orbital Density Functional Theory: Accurate Vibrational Spectra from Efficient Incorporation of Nuclear Quantum Effects. J Am Chem Soc 2022; 144:4039-4046. [PMID: 35196860 DOI: 10.1021/jacs.1c12932] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear quantum effects play a crucial role in many chemical and biological systems involving hydrogen atoms yet are difficult to include in practical molecular simulations. In this paper, we combine our recently developed methods of constrained nuclear-electronic orbital density functional theory (cNEO-DFT) and constrained minimized energy surface molecular dynamics (CMES-MD) to create a new method for accurately and efficiently describing nuclear quantum effects in molecular simulations. By use of this new method, dubbed cNEO-MD, the vibrational spectra of a set of small molecules are calculated and compared with those from conventional ab initio molecular dynamics (AIMD) as well as from experiments. With the same formal scaling, cNEO-MD greatly outperforms AIMD in describing the vibrational modes with significant hydrogen motion characters, demonstrating the promise of cNEO-MD for simulating chemical and biological systems with significant nuclear quantum effects.
Collapse
Affiliation(s)
- Xi Xu
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Zehua Chen
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yang Yang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Tao Z, Yu Q, Roy S, Hammes-Schiffer S. Direct Dynamics with Nuclear-Electronic Orbital Density Functional Theory. Acc Chem Res 2021; 54:4131-4141. [PMID: 34726895 DOI: 10.1021/acs.accounts.1c00516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Direct dynamics simulations of chemical reactions typically require the selection of a method for generating the potential energy surfaces and a method for the dynamical propagation of the nuclei on these surfaces. The nuclear-electronic orbital (NEO) framework avoids this Born-Oppenheimer separation by treating specified nuclei on the same level as the electrons with wave function methods or density functional theory (DFT). The NEO approach is particularly applicable to proton, hydride, and proton-coupled electron transfer reactions, where the transferring proton(s) and all electrons are treated quantum mechanically. In this manner, the zero-point energy, density delocalization, and anharmonicity of the transferring protons are inherently and efficiently included in the energies, optimized geometries, and dynamics.This Account describes how various NEO methods can be used for direct dynamics simulations on electron-proton vibronic surfaces. The strengths and limitations of these approaches are discussed, and illustrative examples are presented. The NEO-DFT method can be used to simulate chemical reactions on the ground state vibronic surface, as illustrated by the application to hydride transfer in C4H9+. The NEO multistate DFT (NEO-MSDFT) method is useful for simulating ground state reactions in which the proton density becomes bilobal during the dynamics, a characteristic of hydrogen tunneling, as illustrated by proton transfer in malonaldehyde. The NEO time-dependent DFT (NEO-TDDFT) method produces excited electronic, vibrational, and vibronic surfaces. The application of linear-response NEO-TDDFT to H2 and H3+, as well as the partially and fully deuterated counterparts, shows that this approach produces accurate fundamental vibrational excitation energies when all nuclei and all electrons are treated quantum mechanically. Moreover, when only specified nuclei are treated quantum mechanically, this approach can be used to optimize geometries on excited state vibronic surfaces, as illustrated by photoinduced single and double proton transfer systems, and to conduct adiabatic dynamics on these surfaces. The real-time NEO-TDDFT method provides an alternative approach for simulating nonequilibrium nuclear-electronic dynamics of such systems. These various NEO methods can be combined with nonadiabatic dynamics methods such as Ehrenfest and surface hopping dynamics to include the nonadiabatic effects between the quantum and classical subsystems. The real-time NEO-TDDFT Ehrenfest dynamics simulation of excited state intramolecular proton transfer in o-hydroxybenzaldehyde illustrates the power of this type of combined approach. The field of multicomponent quantum chemistry is in the early stages, and the methods discussed herein provide the foundation for a wide range of promising future directions to be explored. An appealing future direction is the expansion of the real-time NEO-TDDFT method to describe the dynamics of all nuclei and electrons on the same level. Direct dynamics simulations using NEO wave function methods such as equation-of-motion coupled cluster or multiconfigurational approaches are also attractive but computationally expensive options. The further development of NEO direct dynamics methods will enable the simulation of the nuclear-electronic dynamics for a vast array of chemical and biological processes that extend beyond the Born-Oppenheimer approximation.
Collapse
Affiliation(s)
- Zhen Tao
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Qi Yu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Saswata Roy
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
19
|
Chen Z, Yang J. Nucleus-electron correlation revising molecular bonding fingerprints from the exact wavefunction factorization. J Chem Phys 2021; 155:104111. [PMID: 34525813 DOI: 10.1063/5.0056773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We present a novel theory and implementation for computing coupled electronic and quantal nuclear subsystems on a single potential energy surface, moving beyond the standard Born-Oppenheimer (BO) separation of nuclei and electrons. We formulate an exact self-consistent nucleus-electron embedding potential from the single product molecular wavefunction and demonstrate that the fundamental behavior of the correlated nucleus-electron can be computed for mean-field electrons that are responsive to a quantal anharmonic vibration of selected nuclei in a discrete variable representation. Geometric gauge choices are discussed and necessary for formulating energy invariant biorthogonal electronic equations. Our method is further applied to characterize vibrationally averaged molecular bonding properties of molecular energetics, bond lengths, and protonic and electron densities. Moreover, post-Hartree-Fock electron correlation can be conveniently computed on the basis of nucleus-electron coupled molecular orbitals, as demonstrated for correlated models of second-order Møllet-Plesset perturbation and full configuration interaction theories. Our approach not only accurately quantifies non-classical nucleus-electron couplings for revising molecular bonding properties but also provides an alternative time-independent approach for deploying non-BO molecular quantum chemistry.
Collapse
Affiliation(s)
- Ziyong Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
20
|
Hammes-Schiffer S. Nuclear-electronic orbital methods: Foundations and prospects. J Chem Phys 2021; 155:030901. [PMID: 34293877 DOI: 10.1063/5.0053576] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The incorporation of nuclear quantum effects and non-Born-Oppenheimer behavior into quantum chemistry calculations and molecular dynamics simulations is a longstanding challenge. The nuclear-electronic orbital (NEO) approach treats specified nuclei, typically protons, quantum mechanically on the same level as the electrons with wave function and density functional theory methods. This approach inherently includes nuclear delocalization and zero-point energy in molecular energy calculations, geometry optimizations, reaction paths, and dynamics. It can also provide accurate descriptions of excited electronic, vibrational, and vibronic states as well as nuclear tunneling and nonadiabatic dynamics. Nonequilibrium nuclear-electronic dynamics simulations beyond the Born-Oppenheimer approximation can be used to investigate a wide range of excited state processes. This Perspective provides an overview of the foundational NEO methods and enumerates the prospects for using these methods as building blocks for future developments. The conceptual simplicity and computational efficiency of the NEO approach will enhance its accessibility and applicability to diverse chemical and biological systems.
Collapse
|
21
|
Xu X, Yang Y. Molecular vibrational frequencies from analytic Hessian of constrained nuclear-electronic orbital density functional theory. J Chem Phys 2021; 154:244110. [PMID: 34241362 DOI: 10.1063/5.0055506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nuclear quantum effects are important in a variety of chemical and biological processes. The constrained nuclear-electronic orbital density functional theory (cNEO-DFT) has been developed to include nuclear quantum effects in energy surfaces. Herein, we develop the analytic Hessian for cNEO-DFT energy with respect to the change in nuclear (expectation) positions, which can be used to characterize stationary points on energy surfaces and compute molecular vibrational frequencies. This is achieved by constructing and solving the multicomponent cNEO coupled-perturbed Kohn-Sham (cNEO-CPKS) equations, which describe the response of electronic and nuclear orbitals to the displacement of nuclear (expectation) positions. With the analytic Hessian, the vibrational frequencies of a series of small molecules are calculated and compared to those from conventional DFT Hessian calculations as well as those from the vibrational second-order perturbation theory (VPT2). It is found that even with a harmonic treatment, cNEO-DFT significantly outperforms DFT and is comparable to DFT-VPT2 in the description of vibrational frequencies in regular polyatomic molecules. Furthermore, cNEO-DFT can reasonably describe the proton transfer modes in systems with a shared proton, whereas DFT-VPT2 often faces great challenges. Our results suggest the importance of nuclear quantum effects in molecular vibrations, and cNEO-DFT is an accurate and inexpensive method to describe molecular vibrations.
Collapse
Affiliation(s)
- Xi Xu
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Yang Yang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
22
|
Pavošević F, Hammes-Schiffer S. Multicomponent Unitary Coupled Cluster and Equation-of-Motion for Quantum Computation. J Chem Theory Comput 2021; 17:3252-3258. [PMID: 33945684 DOI: 10.1021/acs.jctc.1c00220] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The variational quantum eigensolver (VQE) algorithm combined with the unitary coupled cluster (UCC) ansatz has been developed for the quantum computation of molecular energies and wave functions within the Born-Oppenheimer approximation. Herein, this approach is extended to multicomponent systems to enable the quantum mechanical treatment of more than one type of particle, such as electrons and positrons or electrons and nuclei, without invoking the Born-Oppenheimer approximation. Specifically, we introduce the multicomponent unitary coupled cluster (mcUCC) method combined with the VQE algorithm for the calculation of ground-state energies and wave functions as well as the multicomponent equation-of-motion (mcEOM) method for the calculation of excitation energies. These methods are developed within the nuclear-electronic orbital (NEO) framework and are formulated in the qubit basis to enable implementations on quantum computers. Moreover, these methods are used to calculate the ground-state energy and excitation energies of positronium hydride, where both electrons and the positron are treated quantum mechanically, as well as the H2 molecule, where both electrons and one proton are treated quantum mechanically. These applications validate the implementation and provide benchmark data for future calculations. The errors due to Trotterization of the mcUCC ansatz are also analyzed. This formalism, as well as the accompanying computer code, will serve as the basis for applications to more complex multicomponent systems, such as simulations of photoinduced nonadiabatic molecular processes, on both classical and quantum computers.
Collapse
Affiliation(s)
- Fabijan Pavošević
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
23
|
Xu X, Yang Y. Full-quantum descriptions of molecular systems from constrained nuclear–electronic orbital density functional theory. J Chem Phys 2020; 153:074106. [DOI: 10.1063/5.0014001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Xi Xu
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Yang Yang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
24
|
Pavošević F, Culpitt T, Hammes-Schiffer S. Multicomponent Quantum Chemistry: Integrating Electronic and Nuclear Quantum Effects via the Nuclear–Electronic Orbital Method. Chem Rev 2020; 120:4222-4253. [DOI: 10.1021/acs.chemrev.9b00798] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fabijan Pavošević
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Tanner Culpitt
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|