1
|
Fuenteslópez CV, Gray M, Bahcevanci S, Martin A, Smith CAB, Coussios C, Cui Z, Ye H, Patrulea V. Mesenchymal stem cell cryopreservation with cavitation-mediated trehalose treatment. COMMUNICATIONS ENGINEERING 2024; 3:129. [PMID: 39251849 PMCID: PMC11385975 DOI: 10.1038/s44172-024-00265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Dimethylsulfoxide (DMSO) has conventionally been used for cell cryopreservation both in research and in clinical applications, but has long-term cytotoxic effects. Trehalose, a natural disaccharide, has been proposed as a non-toxic cryoprotectant. However, the lack of specific cell membrane transporter receptors inhibits transmembrane transport and severely limits its cryoprotective capability. This research presents a method to successfully deliver trehalose into mesenchymal stem cells (MSCs) using ultrasound in the presence of microbubbles. The optimised trehalose concentration was shown to be able to not only preserve membrane integrity and cell viability but also the multipotency of MSCs, which are essential for stem cell therapy. Confocal imaging revealed that rhodamine-labelled trehalose was transported into cells rather than simply attached to the membrane. Additionally, the membranes were successfully preserved in lyophilised cells. This study demonstrates that ultrasonication with microbubbles facilitated trehalose delivery, offering promising cryoprotective capability without the cytotoxicity associated with DMSO-based methods.
Collapse
Affiliation(s)
- Carla V Fuenteslópez
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Michael Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Simge Bahcevanci
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Alexander Martin
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Cameron A B Smith
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Constantin Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| | - Viorica Patrulea
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Centner CS, Belott CJ, Patel RK, Menze MA, Yaddanapudi K, Kopechek JA. Biomodulatory Effects of Molecular Delivery in Human T Cells Using 3D-Printed Acoustofluidic Devices. ULTRASOUND IN MEDICINE & BIOLOGY 2024:S0301-5629(24)00256-4. [PMID: 39107206 DOI: 10.1016/j.ultrasmedbio.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/28/2024] [Accepted: 06/21/2024] [Indexed: 08/09/2024]
Abstract
OBJECTIVE Cell-based therapies have shown significant promise for treating many diseases, including cancer. Current cell therapy manufacturing processes primarily utilize viral transduction to insert genomic material into cells, which has limitations, including variable transduction efficiency and extended processing times. Non-viral transfection techniques are also limited by high variability or reduced molecular delivery efficiency. Novel 3D-printed acoustofluidic devices are in development to address these challenges by delivering biomolecules into cells within seconds via sonoporation. METHODS In this study, we assessed biological parameters that influence the ultrasound-mediated delivery of fluorescent molecules (i.e., calcein and 150 kDa FITC-Dextran) to human T cells using flow cytometry and confocal imaging. RESULTS Low cell plating densities (100,000 cells/mL) enhanced molecular delivery compared to higher cell plating densities (p < 0.001), even though cells were resuspended at equal concentrations for acoustofluidic processing. Additionally, cells in the S phase of the cell cycle had enhanced intracellular delivery compared to cells in the G2/M phase (p < 0.001) and G0/G1 phase (p < 0.01), while also maintaining higher viability compared to G0/G1 phase (p < 0.001). Furthermore, the calcium chelator (EGTA) decreased overall molecular delivery levels. Confocal imaging indicated that the actin cytoskeleton had important implications on plasma membrane recovery dynamics after sonoporation. In addition, confocal imaging indicates that acoustofluidic treatment can permeabilize the nuclear membrane, which could enable rapid intranuclear delivery of nucleic acids. CONCLUSIONS The results of this study demonstrate that a 3D-printed acoustofluidic device can enhance molecular delivery to human T cells, which may enable improved techniques for non-viral processing of cell therapies.
Collapse
Affiliation(s)
- Connor S Centner
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Clinton J Belott
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Riyakumari K Patel
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, KY, USA
| | | | - Jonathan A Kopechek
- Department of Bioengineering, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
3
|
Wen Z, Liu C, Teng Z, Jin Q, Liao Z, Zhu X, Huo S. Ultrasound meets the cell membrane: for enhanced endocytosis and drug delivery. NANOSCALE 2023; 15:13532-13545. [PMID: 37548587 DOI: 10.1039/d3nr02562d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Endocytosis plays a crucial role in drug delivery for precision therapy. As a non-invasive and spatiotemporal-controllable stimulus, ultrasound (US) has been utilized for improving drug delivery efficiency due to its ability to enhance cell membrane permeability. When US meets the cell membrane, the well-known cavitation effect generated by US can cause various biophysical effects, facilitating the delivery of various cargoes, especially nanocarriers. The comprehension of recent progress in the biophysical mechanism governing the interaction between ultrasound and cell membranes holds significant implications for the broader scientific community, particularly in drug delivery and nanomedicine. This review will summarize the latest research results on the biological effects and mechanisms of US-enhanced cellular endocytosis. Moreover, the latest achievements in US-related biomedical applications will be discussed. Finally, challenges and opportunities of US-enhanced endocytosis for biomedical applications will be provided.
Collapse
Affiliation(s)
- Zihao Wen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zihao Teng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Quanyi Jin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Pantalos GM, Heidel JS, Jain IM, Warner SE, Barefoot TL, Baker RO, Hailey M. Intravenous Fluid Resuscitation Capabilities in Simulated Reduced Gravity. Aerosp Med Hum Perform 2023; 94:596-603. [PMID: 37501295 DOI: 10.3357/amhp.6151.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
BACKGROUND: Critical care for exploration space missions may require intravenous (IV) fluid resuscitation therapy. Resource constraints may limit availability of standard, Earth-based infusion technologies. The effect of variable acceleration on infusion flow rates using simple fluid resuscitation supplies was investigated.METHODS: Infusions of water or blood analog (40% glycerol) from a 1 L IV bag were performed using pressure bag augmentation at 0, 150, or 300 mmHg. The solution bag rested on an adjustable mount, configured to different heights to simulate relevant gravitational accelerations (1 G, Martian G, lunar G, and 0 G). The bag emptied through an IV line with a 14- or 20-gauge angiocath into a 3-mmHg venous pressure reservoir. Flow rates were measured using an in-line flow probe. Three determinations were made for each test condition.RESULTS: Temporal flow rate data for all test conditions displayed one-phase exponential decay. At 300 mmHg pressurization, maximum infusion rates ranged from 92-222 mL ⋅ min-1 for water and from 21-49 mL ⋅ min-1 for blood analog. All reduced gravity conditions had significantly longer infusion times in comparison to 1 G for both test solutions.DISCUSSION: Reduced acceleration significantly altered flow rates and infusion times for fluid resuscitation. Fluid resuscitation protocols specify a desired volume to infuse for a target time (e.g., 20-30 mL ⋅ min-1 for a 75-kg adult). This data demonstrates that this protocol parameter can be achieved with infusion pressure bag augmentation alone and provides information for the refinement of fluid resuscitation protocols for exploration space missions.Pantalos GM, Heidel JS, Jain IM, Warner SE, Barefoot TL, Baker RO, Hailey M. Intravenous fluid resuscitation capabilities in simulated reduced gravity. Aerosp Med Hum Perform. 2023; 94(8):596-603.
Collapse
|
5
|
Zhang W, Liu X, Hu Y, Tan S. Incorporate delivery, warming and washing methods into efficient cryopreservation. Front Bioeng Biotechnol 2023; 11:1215591. [PMID: 37397963 PMCID: PMC10309563 DOI: 10.3389/fbioe.2023.1215591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
|
6
|
Liu Y, Yin Q, Luo Y, Huang Z, Cheng Q, Zhang W, Zhou B, Zhou Y, Ma Z. Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves. ULTRASONICS SONOCHEMISTRY 2023; 96:106441. [PMID: 37216791 PMCID: PMC10213378 DOI: 10.1016/j.ultsonch.2023.106441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
Manipulation of micro-objects have been playing an essential role in biochemical analysis or clinical diagnostics. Among the diverse technologies for micromanipulation, acoustic methods show the advantages of good biocompatibility, wide tunability, a label-free and contactless manner. Thus, acoustic micromanipulations have been widely exploited in micro-analysis systems. In this article, we reviewed the acoustic micromanipulation systems that were actuated by sub-MHz acoustic waves. In contrast to the high-frequency range, the acoustic microsystems operating at sub-MHz acoustic frequency are more accessible, whose acoustic sources are at low cost and even available from daily acoustic devices (e.g. buzzers, speakers, piezoelectric plates). The broad availability, with the addition of the advantages of acoustic micromanipulation, make sub-MHz microsystems promising for a variety of biomedical applications. Here, we review recent progresses in sub-MHz acoustic micromanipulation technologies, focusing on their applications in biomedical fields. These technologies are based on the basic acoustic phenomenon, such as cavitation, acoustic radiation force, and acoustic streaming. And categorized by their applications, we introduce these systems for mixing, pumping and droplet generation, separation and enrichment, patterning, rotation, propulsion and actuation. The diverse applications of these systems hold great promise for a wide range of enhancements in biomedicines and attract increasing interest for further investigation.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Qiu Yin
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yucheng Luo
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China
| | - Ziyu Huang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China.
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
7
|
Centner CS, Moore JT, Baxter ME, Yaddanapudi K, Bates PJ, Kopechek JA. Comparison of Acoustofluidic and Static Systems for Ultrasound-Mediated Molecular Delivery to T Lymphocytes. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:90-105. [PMID: 36241589 DOI: 10.1016/j.ultrasmedbio.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Continuous-flow acoustofluidic technologies can potentially improve processing of T lymphocytes for cell therapies by addressing the limitations with viral and non-viral delivery methods. The objective of this study was to assess the intracellular delivery efficiency with acoustofluidic treatment compared with that of static ultrasound treatment. Optimization of parameters in acoustofluidic and static configurations was performed by assessing intracellular delivery of a fluorescent compound (calcein) in viable human Jurkat T lymphocytes. Ultrasound pressure and the concentration of cationic phospholipid-coated microbubbles influenced calcein delivery in both systems. In the static system, a treatment time of 45 s increased molecular delivery compared with 0-30 s (p < 0.01). Refined parameters were used to assess molecular delivery of small and large compounds (0.6-kDa calcein and 150-kDa fluorescein isothiocyanate-dextran, respectively) after ultrasound treatment with the acoustofluidic or static systems. Molecular delivery was similar with refined parameters for acoustofluidic treatment and static treatment (p > 0.05), even though acoustofluidic treatment had lower microbubble concentration (24 μg/mL vs. 94 μg/mL) and shorter treatment time (∼2-3 s vs. 45 s). This study indicates that the acoustofluidic system can significantly enhance intracellular molecular delivery, which could potentially enable acoustofluidic cell transfection during continuous flow processing for manufacture of cell therapies or other applications.
Collapse
Affiliation(s)
- Connor S Centner
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | - John T Moore
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | - Mary E Baxter
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | | | - Paula J Bates
- School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Jonathan A Kopechek
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
8
|
Li Y, Cai S, Shen H, Chen Y, Ge Z, Yang W. Recent advances in acoustic microfluidics and its exemplary applications. BIOMICROFLUIDICS 2022; 16:031502. [PMID: 35712527 PMCID: PMC9197543 DOI: 10.1063/5.0089051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/24/2022] [Indexed: 05/14/2023]
Abstract
Acoustic-based microfluidics has been widely used in recent years for fundamental research due to its simple device design, biocompatibility, and contactless operation. In this article, the basic theory, typical devices, and technical applications of acoustic microfluidics technology are summarized. First, the theory of acoustic microfluidics is introduced from the classification of acoustic waves, acoustic radiation force, and streaming flow. Then, various applications of acoustic microfluidics including sorting, mixing, atomization, trapping, patterning, and acoustothermal heating are reviewed. Finally, the development trends of acoustic microfluidics in the future were summarized and looked forward to.
Collapse
Affiliation(s)
- Yue Li
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Honglin Shen
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Yibao Chen
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Zhixing Ge
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
9
|
Chettab K, Matera EL, Lafond M, Coralie D, Favin-Lévêque C, Goy C, Strakhova R, Mestas JL, Lafon C, Dumontet C. Proof of Concept: Protein Delivery into Human Erythrocytes Using Stable Cavitation. Mol Pharm 2022; 19:929-935. [PMID: 35147436 DOI: 10.1021/acs.molpharmaceut.1c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human erythrocytes represent candidates of choice as carriers for a wide range of drugs due to their unique biophysical and physiological properties. In this study, we used a sonoporation device generating and monitoring acoustic stable cavitation without any addition of contrast or nucleation agents. The device was evaluated for bovine serum albumin (BSA) delivery into human erythrocytes. After determining the adequate hematocrit percentage compatible with the generation of stable cavitation, we determined the optimal sonoporation conditions allowing BSA delivery while preserving erythrocyte integrity. Our results demonstrate that stable cavitation allows efficient delivery of proteins into human erythrocytes with limited lysis of these cells. In conclusion, our study allowed for the development of a stable and regulated cavitation program and the establishment of sonoporation conditions suitable for intracellular protein delivery while maintaining erythrocyte integrity. Additional investigations are needed to move from the proof of concept to a larger-scale application.
Collapse
Affiliation(s)
- Kamel Chettab
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon 69008, France.,Hospices Civils de Lyon, Centre Hospitaller Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite 69310, France
| | - Eva-Laure Matera
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon 69008, France
| | - Maxime Lafond
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Université Lyon, Lyon F-69003, France
| | - Durieux Coralie
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon 69008, France
| | - Camille Favin-Lévêque
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon 69008, France
| | - Clémence Goy
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon 69008, France
| | - Regina Strakhova
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon 69008, France
| | - Jean-Louis Mestas
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Université Lyon, Lyon F-69003, France
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Université Lyon, Lyon F-69003, France
| | - Charles Dumontet
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon 69008, France.,Hospices Civils de Lyon, Centre Hospitaller Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite 69310, France
| |
Collapse
|
10
|
Rich J, Tian Z, Huang TJ. Sonoporation: Past, Present, and Future. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100885. [PMID: 35399914 PMCID: PMC8992730 DOI: 10.1002/admt.202100885] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 05/09/2023]
Abstract
A surge of research in intracellular delivery technologies is underway with the increased innovations in cell-based therapies and cell reprogramming. Particularly, physical cell membrane permeabilization techniques are highlighted as the leading technologies because of their unique features, including versatility, independence of cargo properties, and high-throughput delivery that is critical for providing the desired cell quantity for cell-based therapies. Amongst the physical permeabilization methods, sonoporation holds great promise and has been demonstrated for delivering a variety of functional cargos, such as biomolecular drugs, proteins, and plasmids, to various cells including cancer, immune, and stem cells. However, traditional bubble-based sonoporation methods usually require special contrast agents. Bubble-based sonoporation methods also have high chances of inducing irreversible damage to critical cell components, lowering the cell viability, and reducing the effectiveness of delivered cargos. To overcome these limitations, several novel non-bubble-based sonoporation mechanisms are under development. This review will cover both the bubble-based and non-bubble-based sonoporation mechanisms being employed for intracellular delivery, the technologies being investigated to overcome the limitations of traditional platforms, as well as perspectives on the future sonoporation mechanisms, technologies, and applications.
Collapse
Affiliation(s)
- Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
11
|
Centner CS, Moore JT, Baxter ME, Long ZT, Miller JM, Kovatsenko ES, Xie B, Menze MA, Berson RE, Bates PJ, Yaddanapudi K, Kopechek JA. Acoustofluidic-mediated molecular delivery to human T cells with a three-dimensional-printed flow chamber. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:4534. [PMID: 34972278 DOI: 10.1121/10.0009054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Cell-based therapies have garnered significant interest to treat cancer and other diseases. Acoustofluidic technologies are in development to improve cell therapy manufacturing by facilitating rapid molecular delivery across the plasma membrane via ultrasound and microbubbles (MBs). In this study, a three-dimensional (3D) printed acoustofluidic device was used to deliver a fluorescent molecule, calcein, to human T cells. Intracellular delivery of calcein was assessed after varying parameters such as MB face charge, MB concentration, flow channel geometry, ultrasound pressure, and delivery time point after ultrasound treatment. MBs with a cationic surface charge caused statistically significant increases in calcein delivery during acoustofluidic treatment compared to MBs with a neutral surface charge (p < 0.001). Calcein delivery was significantly higher with a concentric spiral channel geometry compared to a rectilinear channel geometry (p < 0.001). Additionally, calcein delivery was significantly enhanced at increased ultrasound pressures of 5.1 MPa compared to lower ultrasound pressures between 0-3.8 MPa (p < 0.001). These results demonstrate that a 3D-printed acoustofluidic device can significantly enhance intracellular delivery of biomolecules to T cells, which may be a viable approach to advance cell-based therapies.
Collapse
Affiliation(s)
- Connor S Centner
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - John T Moore
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Mary E Baxter
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Zachary T Long
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Jacob M Miller
- Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, USA
| | | | - Benjamin Xie
- Department of Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | - R Eric Berson
- Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Paula J Bates
- School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Kavitha Yaddanapudi
- Department of Surgery, University of Louisville, Louisville, Kentucky 40202, USA
| | - Jonathan A Kopechek
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| |
Collapse
|
12
|
Hur J, Chung AJ. Microfluidic and Nanofluidic Intracellular Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004595. [PMID: 34096197 PMCID: PMC8336510 DOI: 10.1002/advs.202004595] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/14/2021] [Indexed: 05/05/2023]
Abstract
Innate cell function can be artificially engineered and reprogrammed by introducing biomolecules, such as DNAs, RNAs, plasmid DNAs, proteins, or nanomaterials, into the cytosol or nucleus. This process of delivering exogenous cargos into living cells is referred to as intracellular delivery. For instance, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing begins with internalizing Cas9 protein and guide RNA into cells, and chimeric antigen receptor-T (CAR-T) cells are prepared by delivering CAR genes into T lymphocytes for cancer immunotherapies. To deliver external biomolecules into cells, tools, including viral vectors, and electroporation have been traditionally used; however, they are suboptimal for achieving high levels of intracellular delivery while preserving cell viability, phenotype, and function. Notably, as emerging solutions, microfluidic and nanofluidic approaches have shown remarkable potential for addressing this open challenge. This review provides an overview of recent advances in microfluidic and nanofluidic intracellular delivery strategies and discusses new opportunities and challenges for clinical applications. Furthermore, key considerations for future efforts to develop microfluidics- and nanofluidics-enabled next-generation intracellular delivery platforms are outlined.
Collapse
Affiliation(s)
- Jeongsoo Hur
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Aram J. Chung
- School of Biomedical EngineeringInterdisciplinary Program in Precision Public HealthKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
13
|
Subhan MA, Attia SA, Torchilin VP. Advances in siRNA delivery strategies for the treatment of MDR cancer. Life Sci 2021; 274:119337. [PMID: 33713664 DOI: 10.1016/j.lfs.2021.119337] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022]
Abstract
RNA interference (RNAi) represents a promising therapeutic method that uses siRNA for cancer treatment. Although the RNAi technique has been increasingly used for clinical trials, systemic siRNA delivery into targeted cells is still challenging. The barriers impeding siRNA therapeutics delivery and impacting the treatment outcome must overcome with negligible systemic toxicity for a desirable and successful delivery of siRNA to MDR cancer cells. Nano delivery strategies have been investigated for nanocarrier functionalization, cancer immunotherapy and cancer targeting. Lipid nanoparticles (LNPs), dynamic polyconjugates (DPC™), GalNAc-siRNA conjugates, exosome and RBC systems have shown potential for efficient delivery of siRNA to cancer cells. Delivery of siRNA to tumor cells, immune cells to regulate T cell functions for immunotherapy are promising approaches.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Sara Aly Attia
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Department of Oncology, Radiotherapy and Plastic Surgery I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
14
|
Weng L. Technologies and Applications Toward Preservation of Cells in a Dry State for Therapies. Biopreserv Biobank 2021; 19:332-341. [PMID: 33493407 DOI: 10.1089/bio.2020.0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cell-based therapeutics promise to transform the treatment of a wide range of diseases, many of which, up to this point, are incurable. During the past decade, an increasing number of cell therapies have been approved by government regulatory agencies in the United States, Europe, and Japan. Thousands of clinical trials based on live cell therapies are now taking place around the world. But most of these live cell therapies face temporal and/or spatial distances between manufacture and administration, posing a risk of degradation in potency. Cryopreservation has become the predominant biobanking approach to maintain the product's safety and efficacy during transportation and storage. However, the necessity of cryogenic shipment and storage could limit patient access to these emerging therapies and increase the costs of logistics. In the (bio)pharmaceutical industries, freeze-drying and desiccation are established preservation procedures for manufacturing small molecule drugs, liposomes, and monoclonal antibodies. Over the past two decades, there has been a growing body of research exploring the freeze-drying or drying of mammalian cells, with varying degrees of success. This article provides an overview of the technologies that were adopted or developed in these pioneering studies, paving the road toward the preservation of cell-based therapeutics in a dry state for biomanufacturing.
Collapse
Affiliation(s)
- Lindong Weng
- Sana Biotechnology, Inc., South San Francisco, California, USA
| |
Collapse
|
15
|
Janis BR, Priddy MC, Otto MR, Kopechek JA, Menze MA. Sonoporation enables high-throughput loading of trehalose into red blood cells. Cryobiology 2020; 98:73-79. [PMID: 33359645 DOI: 10.1016/j.cryobiol.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Despite recent advances in biostabilization, clinical blood supplies still experience shortages and storage limitations for red blood cells (RBCs) have not yet been sufficiently addressed. Storing RBCs in a frozen or dried state is an appealing solution to address storage limitations, but many promising cryoprotectants, including the non-reducing sugar trehalose, are impermeant to mammalian cell membranes and cannot be utilized effectively using currently available compound-loading methods. We found that transient pore formation induced by ultrasound and microbubbles (sonoporation) offers an effective means of loading trehalose into RBCs to facilitate long-term storage in a frozen or desiccated state. The protective potential of trehalose loading was demonstrated by freezing processed RBCs at -1 °C/min to -80 °C, then either storing the cells at -80 °C or lyophilizing them. RBCs were either thawed or rehydrated after 42 days of storage and evaluated for membrane integrity and esterase activity to estimate recovery and cell viability. The intracellular concentration of trehalose reached 40 mM after sonoporation and over 95% of treated RBCs were recovered after loading. Loading of trehalose was sufficient to maintain RBC morphology and esterase activity in most cells during freezing (>90% RBC recovery) and to a lower degree after lyophilization and rehydration (>20% recovery). Combining sonoporation with an integrated fluidics device allowed for rapid loading of up to 70 mM trehalose into RBCs. These results demonstrate the potential of sonoporation-mediated trehalose loading to increase recovery of viable RBCs, which could lead to effective methods for long-term stabilization of RBCs.
Collapse
Affiliation(s)
- Brett R Janis
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA.
| | - Mariah C Priddy
- Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Meghan R Otto
- Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Jonathan A Kopechek
- Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA.
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|