1
|
Wang R, Mu R, Li Z, Zhang Y, Yang J, Wang G, Zhang T. The reaction mechanism of SO 3 with the multifunctional compound ethanolamine and its atmospheric implications. Phys Chem Chem Phys 2024; 26:21777-21788. [PMID: 39101517 DOI: 10.1039/d4cp01543f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
SO3 is an important reactive species in sulfur cycle and sulfuric acid formation processes and its reactions with some functional group substances, such as H2O, NH3, CH3OH, and organic and inorganic acids, have been extensively studied. However, its loss mechanism with multifunctional species is still lacking in detail. Herein, the reaction mechanism between SO3 and monoethanolamide (MEA) was investigated in the gas phase and on water droplets. The quantum chemical calculations indicate that the gas-phase reactions of SO3 with the OH and NH2 moieties of MEA hardly occur as their reaction energy barriers are up to 21.9-29.4 kcal mol-1. When a single water molecule is added into the SO3 + MEA reaction, it not only decreases the reaction barrier by at least 15.0 kcal mol-1 and thus enhances the rate obviously, but can also lead to the main product changing from HOCH2CH2NHSO3H to NH2CH2CH2OSO3H. The Born Oppenheimer molecular dynamics simulations on a water droplet show that the routes of the NH2CH2CH2OSO3-⋯H3O+ ion pair, HSO4- and HOCH2CH2NH3+ ions and zwitterionic formations of HOCH2CH2NH2+-SO3- and SO3--OCH2CH2NH3+ occur through a loop-structure route or chain reaction process, and can be finished within several picoseconds. Interestingly, the nucleation simulations show that the products of HOCH2CH2NHSO3H and NH2CH2CH2OSO3H have a potential ability to participate in the formation of new particles as they can form larger clusters with H2SO4, NH3 and H2O molecules within 20 ns. Thus, the present study will not only give new insight into the reaction between SO3 and multifunctional compounds, but also provide a new potential formation mechanism for particles resulting from the loss of SO3.
Collapse
Affiliation(s)
- Rui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, P. R. China.
| | - Ruxue Mu
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, P. R. China.
| | - Zeyao Li
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, P. R. China.
| | - Yongqi Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, P. R. China.
| | - Jihuan Yang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, P. R. China.
| | - Guanhua Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, P. R. China.
| | - Tianlei Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, P. R. China.
| |
Collapse
|
2
|
Sarkar S, Oram BK, Bandyopadhyay B. Influence of Ammonia and Water on the Fate of Sulfur Trioxide in the Troposphere: Theoretical Investigation of Sulfamic Acid and Sulfuric Acid Formation Pathways. J Phys Chem A 2019; 123:3131-3141. [PMID: 30901223 DOI: 10.1021/acs.jpca.8b09306] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reaction of ammonia with SO3 as a potential source of sulfamic acid in the troposphere has been investigated by means of electronic structure and chemical kinetic calculations. Besides, the hydrolysis reaction, which is known to be a major atmospheric decay channel of SO3, has also been investigated. The catalytic effects of ammonia and water on both the reactions have been studied. Rate coefficients for all the studied reaction channels were calculated using the transition state theory employing pre-equilibrium approximation. Calculated rate coefficients for a number of catalyzed hydrolysis and ammonolysis processes were found to be much higher (by ∼105 to ∼109 times) than the gas kinetic limit at ambient temperature. With decrease in temperature because of negative temperature dependence of rate coefficients, that difference became even larger (up to ∼1016 times). Therefore, in order to remove the discrepancies, rate coefficients for all the studied reaction channels were calculated by means of the master equation. The results showed marked improvements, with only one channel showing a slightly higher rate coefficient above the gas kinetic limit. The rate coefficients for catalyzed channels obtained from the master equation also showed negative temperature dependence, albeit to a much smaller extent. The uncatalyzed ammonolysis reaction, similar to the corresponding hydrolysis, was found to be too slow to have any practical atmospheric implication. For both reactions, ammonia-catalyzed pathways have higher rate coefficients than water-catalyzed ones. Between hydrolysis and ammonolysis, the latter showed a higher rate coefficient. In spite of that, ammonolysis is expected to have negligible contribution in the tropospheric loss process of SO3 because of large difference in concentration values between water and ammonia in the troposphere.
Collapse
Affiliation(s)
- Saptarshi Sarkar
- Department of Chemistry , Malaviya National Institute of Technology Jaipur , Jaipur 302017 , India
| | - Binod Kumar Oram
- Department of Chemistry , Malaviya National Institute of Technology Jaipur , Jaipur 302017 , India
| | - Biman Bandyopadhyay
- Department of Chemistry , Malaviya National Institute of Technology Jaipur , Jaipur 302017 , India
| |
Collapse
|