1
|
Chang Y, Ashfold MNR, Yuan K, Yang X. Exploring the vacuum ultraviolet photochemistry of astrochemically important triatomic molecules. Natl Sci Rev 2023; 10:nwad158. [PMID: 37771464 PMCID: PMC10533343 DOI: 10.1093/nsr/nwad158] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/03/2022] [Accepted: 02/08/2023] [Indexed: 09/30/2023] Open
Abstract
The recently constructed vacuum ultraviolet (VUV) free electron laser (FEL) at the Dalian Coherent Light Source (DCLS) is yielding a wealth of new and exquisitely detailed information about the photofragmentation dynamics of many small gas-phase molecules. This Review focuses particular attention on five triatomic molecules-H2O, H2S, CO2, OCS and CS2. Each shows excitation wavelength-dependent dissociation dynamics, yielding photofragments that populate a range of electronic and (in the case of diatomic fragments) vibrational and rotational quantum states, which can be characterized by different translational spectroscopy methods. The photodissociation of an isolated molecule from a well-defined initial quantum state provides a lens through which one can investigate how and why chemical reactions occur, and provides numerous opportunities for fruitful, synergistic collaborations with high-level ab initio quantum chemists. The chosen molecules, their photofragments and the subsequent chemical reaction networks to which they can contribute are all crucial in planetary atmospheres and in interstellar and circumstellar environments. The aims of this Review are 3-fold: to highlight new photochemical insights enabled by the VUV-FEL at the DCLS, notably the recently recognized central atom elimination process that is shown to contribute in all of these triatomic molecules; to highlight some of the potential implications of this rich photochemistry to our understanding of interstellar chemistry and molecular evolution within the universe; and to highlight other and future research directions in areas related to chemical reaction dynamics and astrochemistry that will be enabled by increased access to VUV-FEL sources.
Collapse
Affiliation(s)
- Yao Chang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hefei National Laboratory, Hefei 230088, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Yin T, Ma L, Cheng M, Gao H. A New Band System of the Dicarbon Molecule in the Vacuum Ultraviolet Region. J Phys Chem Lett 2022; 13:11008-11014. [PMID: 36410726 DOI: 10.1021/acs.jpclett.2c03175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As one of the most abundant molecules in the universe, the long history of spectroscopic studies of the dicarbon molecule, C2, reaches back two centuries. While many electronic band systems with upper states below the lowest dissociation threshold have been well characterized, much less is known about transitions to higher-lying states. Here, we report the observation of a new band system of C2 from the lowest triplet state a3Πu through a resonance-enhanced multiphoton ionization scheme. The upper state is identified as 13Σg+, which is determined to be 61539.0 cm-1 (7.630 eV) above ground state X1Σg+. The spectroscopic parameters determined for the 13Σg+ state are in excellent agreement with those predicted by the high-level ab initio calculations. This study paves the way for systematic investigations of the photoabsorption and photodissociation of C2 in the vacuum ultraviolet region, which has important applications in the field of astrochemistry.
Collapse
Affiliation(s)
- Tonghui Yin
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liying Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Chen B, Kurita KL, Wong N, Crittenden CM. Ultraviolet photodissociation facilitates mass spectrometry-based structure elucidation with pyrrolidine and piperidine containing compounds. J Pharm Biomed Anal 2022; 211:114622. [DOI: 10.1016/j.jpba.2022.114622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/27/2022]
|
4
|
Liu M, Jiang P, Cheng M, Gao H. Vacuum ultraviolet photoexcitation and photofragment spectroscopic studies of 14N 15N between 109000 and 117500 cm -1. J Chem Phys 2021; 155:234305. [PMID: 34937384 DOI: 10.1063/5.0072604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, we employed a newly built time-slice velocity-map ion imaging setup, equipped with two tunable vacuum ultraviolet (VUV) laser sources, to obtain the first comprehensive high-resolution photoexcitation and photofragment excitation spectra of 14N15N in the VUV photon energy range 109 000-117 500 cm-1. The spectroscopic simulation program PGOPHER was used to analyze the rotationally resolved spectra. Band origins, rotational constants, and isotope shifts compared with those of 14N2 have been obtained for 31 electric-dipole-allowed vibrational states of 14N15N in the aforementioned energy range. These spectroscopic parameters are found to depend on the vibrational quantum number irregularly. Systematic perturbations of the rotational transition energies and predissociation rates within individual absorption bands have also been observed. These are proved to be caused by the strong homogeneous interactions between the valence b'1Σu + state and the Rydberg cn ' 1Σu + states, and between the valence b1Πu states and the Rydberg o3 1Πu states. Heterogeneous interactions between the Rydberg cn 1Πu states and cn ' 1Σu + states also play an important role.
Collapse
Affiliation(s)
- Min Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Pan Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Min Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Wang YF, Du TY, Dai DX, Xiao CL, Yang XM. A slow and clean fluorine atom beam source based on ultraviolet laser photolysis. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2102033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Yu-feng Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-yu Du
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-xu Dai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chun-lei Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xue-ming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Chi X, Jiang P, Zhu Q, Cheng M, Gao H. Photodissociation branching ratios for several absorption bands of 12C 16O from 108,500 to 109,220 cm −1. Mol Phys 2021. [DOI: 10.1080/00268976.2020.1718228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xiaoping Chi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Pan Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qihe Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Min Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hong Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Gao H. Molecular photodissociation in the vacuum ultraviolet region: implications for astrochemistry and planetary atmospheric chemistry. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1861354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hong Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Guan L, Jiang P, Zhang G, Yin T, Chi X, Bai Y, Cheng M, Gao H. Vacuum Ultraviolet Photodissociation Branching Ratios of 12C 16O, 13C 16O, and 12C 18O from 100500 to 102320 cm -1. J Phys Chem A 2020; 124:9382-9391. [PMID: 33146529 DOI: 10.1021/acs.jpca.0c08026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C+ ion photofragment spectra and photodissociation branching ratios into the two energetically available channels, C(1D) + O(3P) and C(3P) + O(3P), have been obtained for the three CO isotopologues, 12C16O, 13C16O, and 12C18O, in the vacuum ultraviolet range 100500-102320 cm-1. The two vibronic states of 1Σ+ symmetry, F(3dσ) 1Σ+(υ' = 1) and J(4sσ) 1Σ+(υ' = 0), predominantly dissociate into the lowest channel C(3P) + O(3P) through interactions with the repulsive D'1Σ+ state. All three vibronic states of 1Π symmetry, E'1Π(υ' = 1, 2) and G(3dπ) 1Π(υ' = 0), dissociate into both of the channels above. The photodissociation branching ratios into the channel C(1D) + O(3P) for E'1Π(υ' = 1, 2) are found to be independent of both the rotational quantum number and e/f parity, while those for G(3dπ) 1Π(υ' = 0) strongly depend on the rotational quantum number, indicating very different predissociation pathways between the valence states E'1Π(υ' = 1, 2) and the Rydberg state G(3dπ) 1Π(υ' = 0). The potential energy curves of CO in the aforementioned energy range and below have recently been well constructed due to a series of interplays between high-resolution spectroscopic studies and theoretical calculations; the photodissociation branching ratios measured in this study can provide further benchmarks for future theoretical investigations which aim to understand the detailed predissociation dynamics of CO.
Collapse
Affiliation(s)
- Lichang Guan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tonghui Yin
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Chi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Min Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Jiang P, Chi X, Zhang G, Yin T, Guan L, Cheng M, Gao H. Reinvestigation of the Rydberg W 1Π(ν = 1) level of 12C 16O, 13C 16O, and 12C 18O through rotationally dependent photodissociation branching ratio measurements. J Chem Phys 2020; 152:234308. [PMID: 32571069 DOI: 10.1063/5.0009931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A recent high resolution photoabsorption study revealed that the Rydberg W1Π(ν = 1) level of carbon monoxide (CO) is perturbed by the valence E″1Π(ν = 0) level, and the predissociation linewidth shows drastic variation at the crossing point due to the interference effect [Heays et al., J. Chem. Phys. 141(14), 144311 (2014)]. Here, we reinvestigate the Rydberg W1Π(ν = 1) level for the three CO isotopologues, 12C16O, 13C16O, and 12C18O, by measuring the rotationally dependent photodissociation branching ratios. The C+ ion photofragment spectra obtained here reproduce the recent high resolution photoabsorption spectra very well, including the presence of the valence E″1Π(ν = 0) level. The photodissociation branching ratios into the spin-forbidden channel C(1D) + O(3P) show sudden increases at the crossing point between the W1Π(ν = 1) and E″1Π(ν = 0) levels, which is in perfect accordance with the drastic variation of the linewidth observed in the recent spectroscopic study. Further analysis reveals that the partial predissociation rate into the lowest channel C(3P) + O(3P) shows a much more prominent decrease at the crossing point, which is caused by the interference effect between the W1Π(ν = 1) and E″1Π(ν = 0) levels, than that into the spin-forbidden channel C(1D) + O(3P), and this is the reason of the sudden increase as observed in the photodissociation branching ratio measurements. We hope that the current experimental investigation will stimulate further theoretical studies, which could thoroughly address all the experimental observations in a quantitative way.
Collapse
Affiliation(s)
- Pan Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoping Chi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guodong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tonghui Yin
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lichang Guan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Min Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Gao H, Song Y, Jackson WM, Ng CY. Photodissociation branching ratios of 12C 16O from 108000 cm −1 to 113200 cm -1 measured by two-color VUV-VUV laser pump-probe time-slice velocity-map ion imaging method: Observation of channels for producing O( 1D). CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1911199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Hong Gao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences,
Beijing 100190, China
- Department of Chemistry, University of California, Davis CA 95616, USA
| | - Yu Song
- Department of Chemistry, University of California, Davis CA 95616, USA
| | | | - Cheuk-Yiu Ng
- Department of Chemistry, University of California, Davis CA 95616, USA
| |
Collapse
|
11
|
Jiang P, Chi X, Zhu Q, Cheng M, Gao H. Channel-resolved rotationally dependent predissociation rate constants reveal the state-to-state dissociation dynamics of carbon monoxide in electronically excited states. Phys Chem Chem Phys 2020; 22:2549-2556. [PMID: 31942884 DOI: 10.1039/c9cp06351j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rotational dependence of the total predissociation rate constants deduced from linewidth measurements in spectroscopic studies have often been used to predict the possible electronic coupling schemes in the photodissociation process of carbon monoxide (CO), while the intrinsic multi-channel characteristics of CO photodissociation make the prediction unreliable and sometimes misleading conclusions could be reached. Here, we demonstrate for the first time in the Rydberg 4p(2) and 5p(0) complexes region of 13C16O that absolute partial predissociation rate constants into each individual channel and their dependences on the rotational quantum numbers can be obtained through branching ratio measurements in combination with the total predissociation rate constants reported in spectroscopic studies. These channel-resolved rotationally dependent predissociation rate constants are found to unambiguously reveal the detailed state-to-state photodissociation dynamics of CO, which is not available from either the branching ratio or the total predissociation rate constant measurements individually.
Collapse
Affiliation(s)
- Pan Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Chi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qihe Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Wang L, Mo Y. Photodissociation of HCl in the photon energy range 14.6-15.0 eV: Channel-resolved branching ratios and fragment angular distributions. J Chem Phys 2020; 152:014309. [PMID: 31914760 DOI: 10.1063/1.5140614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
For the HCl molecule, four photodissociation channels are open in the excitation energy region 14.6-15.0 eV: H(2s) + Cl(2P3/2), H(2p) + Cl(2P3/2), H(2s) + Cl(2P1/2), and H(2p) + Cl(2P1/2). We measured the fragment angular distributions and the branching ratios of the four dissociation channels by using the extreme ultraviolet laser pump and UV laser probe, delay-time-curve, and velocity map imaging methods. The channel-resolved fragment angular distributions and fragment yield spectra show that various Rydberg states (superexcited states) contribute to the absorption cross sections, including the [A2Σ+]4pσ, [A2Σ+]4pπ, [A2Σ+]3dσ, [A2Σ+]3dπ, and [A2Σ+]5sσ states. Most of the H(2s) + Cl(2P1/2) channels correlate with the 1Σ+ states, while the other channels correlate with mixing excitations of the 1Σ+ and 1,3Π states. The channel branching ratios are dependent on the excitation energies. When the four channels are open, the channel branching ratios of H(2s) + Cl(2P3/2) and H(2p) + Cl(2P1/2) are small. Based on the recent ab initio potential energy curves, the Rydberg states converging to the ion-core A2Σ+ are proposed to be predissociated by the nuclear vibrational continua of the Rydberg states converging to the ion-core X2Π.
Collapse
Affiliation(s)
- Lingxuan Wang
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
| | - Yuxiang Mo
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Jiang P, Chi X, Zhu Q, Cheng M, Gao H. Strong and selective isotope effect in the vacuum ultraviolet photodissociation branching ratios of carbon monoxide. Nat Commun 2019; 10:3175. [PMID: 31320624 PMCID: PMC6639306 DOI: 10.1038/s41467-019-11086-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/21/2019] [Indexed: 11/10/2022] Open
Abstract
Rare isotope (13C, 17O and 18O) substitutions can substantially change absorption line positions, oscillator strengths and photodissociation rates of carbon monoxide (CO) in the vacuum ultraviolet (VUV) region, which has been well accounted for in recent photochemical models for understanding the large isotopic fractionation effects that are apparent in carbon and oxygen in the solar system and molecular clouds. Here, we demonstrate a strong isotope effect associated with the VUV photodissociation of CO by measuring the branching ratios of 12C16O and 13C16O in the Rydberg 4p(2), 5p(0) and 5s(0) complex region. The measurements show that the quantum yields of electronically excited C atoms in the photodissociation of 13C16O are dramatically different from those of 12C16O, revealing strong isotope effect. This isotope effect strongly depends on specific quantum states of CO being excited, which implies that such effect must be considered in the photochemical models on a state by state basis.
Collapse
Affiliation(s)
- Pan Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Chi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qihe Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Min Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Hong Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|