1
|
Liu Q, Li Z, Liu P, Yang X, Yu S. Resonance-state selective photodissociation dynamics of OCS + hv → CS(X1Σ+) + O(3Pj=2,1,0) via the 21Σ+ state. J Chem Phys 2023; 158:2888161. [PMID: 37139996 DOI: 10.1063/5.0150850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
Understanding vacuum ultraviolet photodissociation dynamics of Carbonyl sulfide (OCS) is of considerable importance in the study of atmospheric chemistry. Yet, photodissociation dynamics of the CS(X1Σ+) + O(3Pj=2,1,0) channels following excitation to the 21Σ+(ν1',1,0) state has not been clearly understood so far. Here, we investigate the O(3Pj=2,1,0) elimination dissociation processes in the resonance-state selective photodissociation of OCS between 147.24 and 156.48 nm by using the time-sliced velocity-mapped ion imaging technique. The total kinetic energy release spectra are found to exhibit highly structured profiles, indicative of the formation of a broad range of vibrational states of CS(1Σ+). The fitted CS(1Σ+) vibrational state distributions differ for the three 3Pj spin-orbit states, but a general trend of the inverted characteristics is observed. Additionally, the wavelength-dependent behaviors are also observed in the vibrational populations for CS(1Σ+, v). The CS(X1Σ+, v = 0) has a significantly strong population at several shorter wavelengths, and the most populated CS(X1Σ+, v) is gradually transferred to a higher vibrational state with the decrease in the photolysis wavelength. The measured overall β-values for the three 3Pj spin-orbit channels slightly increase and then abruptly decrease as the photolysis wavelength increases, while the vibrational dependences of β-values show an irregularly decreasing trend with increasing CS(1Σ+) vibrational excitation at all studied photolysis wavelengths. The comparison of the experimental observations for this titled channel and the S(3Pj) channel reveals that two different intersystem crossing mechanisms may be involved in the formation of the CS(X1Σ+) + O(3Pj=2,1,0) photoproducts via the 21Σ+ state.
Collapse
Affiliation(s)
- Qian Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
| | - Zheng Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
| | - Peng Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
| | - Xueming Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
| |
Collapse
|
2
|
Li Z, Liao H, Yang W, Yang X, Yu S. Vacuum ultraviolet photodissociation of OCS via the 2 1Σ + state: the S( 1D 2) elimination channel. Phys Chem Chem Phys 2022; 24:17870-17878. [PMID: 35851633 DOI: 10.1039/d2cp02044k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photodissociation of OCS is necessary to model the primary photochemical processes of OCS in the global cycling of sulfur and interstellar photochemistry. Here, by combining the time-sliced velocity-map ion imaging technique with the single vacuum ultraviolet photon ionization method, we have studied the CO(1Σ+, v) + S(1D2) photoproduct channel from the OCS photodissociation via the eight different vibrational resonances ( = 1-8) in the 21Σ+(, 1, 0) ← X1Σ+(0, 0, 0) band. From the measured S(1D2) images, the wavelength-dependent CO(1Σ+, v) vibrational state populations have been obtained in the wavelength range of 142.98-154.37 nm. The majority of the CO(1Σ+, v) photoproducts are shown to abruptly populate from low vibrational states to high vibrational states as the photolysis wavelength decreases from 152.38 to 148.92 nm. The anisotropy parameters (β) for the CO(1Σ+, v) + S(1D2) channel have also been determined from the images of the S(1D2) photoproducts. It is found that the vibrational state-specific β-values present a similar decreasing trend with increasing CO vibrational excitation for all the eight vibrational resonances of OCS*(21Σ+). These observations indicate that there is a possibility that more than one non-adiabatic dissociation pathways with different dissociation lifetimes are involved in the formation of CO(1Σ+) + S(1D2) photoproducts from the initial vibronic levels of the 21Σ+ state to the final dissociative state.
Collapse
Affiliation(s)
- Zheng Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, Zhejiang Province, P. R. China.
| | - Hong Liao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, Zhejiang Province, P. R. China.
| | - Wenshao Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, Zhejiang Province, P. R. China.
| | - Xueming Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, Zhejiang Province, P. R. China. .,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, Liaoning Province, P. R. China.,Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, P. R. China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, Zhejiang Province, P. R. China.
| |
Collapse
|
3
|
Vacuum ultraviolet photodissociation dynamics of OCS via the F Rydberg state: The S( 3P J=2,1,0) product channels. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Ling C, Liao H, Yuan D, Chen W, Tan Y, Li W, Yu S, Yang X, Wang X. Vacuum ultraviolet photodissociation dynamics of OCS + hv → CO( 1Σ +) + S( 1S 0) via the E and F Rydberg states. Phys Chem Chem Phys 2021; 23:5809-5816. [PMID: 33684186 DOI: 10.1039/d1cp00078k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The state-resolved photodissociation of the CO(1Σ+) + S(1S0) photoproduct channel, formed by vacuum ultraviolet photoexcitation of OCS to a progression of the symmetric stretching vibration (ν1') in the E and F states, has been investigated by using the time-sliced velocity map ion imaging technique. The total kinetic energy release spectra and the vibrational state specific anisotropy parameters (β) were obtained based on the raw images of S(1S0) photoproducts detected in the wavelength ranges of 134.40-140.98 nm, respectively. Except for vibrational band origins, the CO(1Σ+) photoproducts are found to have more significant populations at highly vibrationally excited states as the symmetric stretching vibrational excitation of the E and F states increases. Furthermore, the vibrational-state specific β values for the CO(1Σ+) + S(1S0) channel via the E and F states both show a sudden change from negative to positive in the vicinity of moderately vibronic levels of the E and F states. This anomalous phenomenon suggests that multiple excited states with different symmetries are involved in the photoexcitation process at relatively short photolysis wavelengths due to the strong vibronic couplings existing in the higher vibronic levels of the E and F states, and the formation of CO(1Σ+) + S(1S0) photoproducts may proceed by different nonadiabatic interactions from the prepared excited states to the lower dissociative state 1Σ+, with strong dependence of the initially symmetric stretching excitation in the Rydberg-type transitions.
Collapse
Affiliation(s)
- Caining Ling
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Hong Liao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Daofu Yuan
- Center for Advanced Chemical Physics and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China.
| | - Wentao Chen
- Center for Advanced Chemical Physics and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China.
| | - Yuxin Tan
- Center for Advanced Chemical Physics and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China.
| | - Wantao Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Xueming Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China. and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, P. R. China
| | - Xingan Wang
- Center for Advanced Chemical Physics and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China.
| |
Collapse
|
5
|
Zhao M, Li ZX, Xie T, Chang Y, Wu FY, Wang Q, Chen WT, Wang T, Wang XA, Yuan KJ, Yang XM. Photodissociation dynamics of CS 2 near 204 nm: The S( 3P J)+CS( X1Σ +) channels. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2010183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Min Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhen-xing Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Ting Xie
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yao Chang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fu-yan Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Qin Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Wen-tao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Tao Wang
- College of Science, Sothern University of Science and Technology, Shenzhen 518055, China
| | - Xing-an Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Kai-jun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xue-ming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Science, Sothern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Gao H. Molecular photodissociation in the vacuum ultraviolet region: implications for astrochemistry and planetary atmospheric chemistry. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1861354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hong Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Xie T, Chen W, Yuan D, Yu S, Fu B, Yuan K, Yang X, Wang X. Photodissociation Dynamics of OCS near 150 nm: The S( 1S J=0) and S( 3P J=2,1,0) Product Channels. J Phys Chem A 2020; 124:6420-6426. [PMID: 32663027 DOI: 10.1021/acs.jpca.0c03823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vacuum ultraviolet photodissociation dynamics of carbonyl sulfide (OCS) was investigated by using the time-sliced velocity map ion imaging technique. Images of the S(1SJ=0) and S(3PJ=2,1,0) photofragments formed in the OCS photodissociation were acquired at six photolysis wavelengths from 147.24 to 156.48 nm. Vibrational states of the CO coproducts were partially resolved and identified in the images. Two main dissociation product channels, namely, the spin-allowed S(1SJ=0) + CO(X1Σg+) and spin-forbidden S(3PJ=2,1,0) + CO(X1Σg+), were observed. At each photolysis wavelength, the total kinetic energy releases, the relative population of different CO vibrational states, and the anisotropic parameters were derived. Variations of the relative population were noticed between different spin-orbit states of the S(3PJ) channel. It was found that the S(1SJ=0) + CO(X1Σg+) channel is dominated by the 1Σ+ ← 1Σ+ parallel transition of OCS. Interestingly, two types of anisotropic parameters are found at different photolysis wavelengths for the spin-forbidden S(3PJ=2,1,0) + CO(X1Σg+) product channel. The anisotropic parameters at 147.24 and 150.70 nm are significantly smaller than at the other four photolysis wavelengths. This phenomenon indicates two different nonadiabatic pathways are responsible for the spin-forbidden channels, which is consistent with the barrier structure in the exit channel of one of the triplet states.
Collapse
Affiliation(s)
- Ting Xie
- Hefei National Laboratory for Materials Science at the Microscale and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Wentao Chen
- Hefei National Laboratory for Materials Science at the Microscale and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Daofu Yuan
- Hefei National Laboratory for Materials Science at the Microscale and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, P. R. China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, P. R. China
| | - Xingan Wang
- Hefei National Laboratory for Materials Science at the Microscale and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| |
Collapse
|