1
|
Xue Y, Wang JN, Hu W, Zheng J, Li Y, Pan X, Mo Y, Shao Y, Wang L, Mei Y. Affordable Ab Initio Path Integral for Thermodynamic Properties via Molecular Dynamics Simulations Using Semiempirical Reference Potential. J Phys Chem A 2021; 125:10677-10685. [PMID: 34894680 PMCID: PMC9108008 DOI: 10.1021/acs.jpca.1c07727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Path integral molecular dynamics (PIMD) is becoming a routinely applied method for incorporating the nuclear quantum effect in computer simulations. However, direct PIMD simulations at an ab initio level of theory are formidably expensive. Using the protonated 1,8-bis(dimethylamino)naphthalene molecule as an example, we show in this work that the computational expense for the intramolecular proton transfer between the two nitrogen atoms can be remarkably reduced by implementing the idea of reference-potential methods. The simulation time can be easily extended to a scale of nanoseconds while maintaining the accuracy on an ab initio level of theory for thermodynamic properties. In addition, postprocessing can be carried out in parallel on massive computer nodes. A 545-fold reduction in the total CPU time can be achieved in this way as compared to a direct PIMD simulation at the same ab initio level of theory.
Collapse
Affiliation(s)
- Yuanfei Xue
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Jia-Ning Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Wenxin Hu
- The Computer Center, School of Data Science & Engineering, East China Normal University, Shanghai 200062, China
| | - Jun Zheng
- The Computer Center, School of Data Science & Engineering, East China Normal University, Shanghai 200062, China
| | - Yongle Li
- Department of Physics, International Center of Quantum and Molecular Structure, and Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China
| | - Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yan Mo
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China,NYU–ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China,NYU–ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
2
|
Wang JN, Liu W, Li P, Mo Y, Hu W, Zheng J, Pan X, Shao Y, Mei Y. Accelerated Computation of Free Energy Profile at Ab Initio Quantum Mechanical/Molecular Mechanics Accuracy via a Semiempirical Reference Potential. 4. Adaptive QM/MM. J Chem Theory Comput 2021; 17:1318-1325. [PMID: 33593057 PMCID: PMC8335528 DOI: 10.1021/acs.jctc.0c01149] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although quantum mechanical/molecular mechanics (QM/MM) methods are now routinely applied to the studies of chemical reactions in condensed phases and enzymatic reactions, they may experience technical difficulties when the reactive region is varying over time. For instance, when the solvent molecules are directly participating in the reaction, the exchange of water molecules between the QM and MM regions may occur on a time scale comparable to the reaction time. To cope with this situation, several adaptive QM/MM schemes have been proposed. However, these methods either add significantly to the computational cost or introduce artificial restraints to the system. In this work, we developed a novel adaptive QM/MM scheme and applied it to the study of a nucleophilic addition reaction. In this scheme, the configuration sampling was performed with a small QM region (without solvent molecules), and the thermodynamic properties under another potential energy function with a larger QM region (with a certain number of solvent molecules and/or different levels of QM theory) are computed via extrapolation using the reference-potential method. Our simulation results show that this adaptive QM/MM scheme is numerically stable, at least for the case studied in this work. Furthermore, this method also offers an inexpensive way to examine the convergence of the QM/MM calculation with respect to the size of the QM region.
Collapse
Affiliation(s)
- Jia-Ning Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Wei Liu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Pengfei Li
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yan Mo
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Wenxin Hu
- The Computer Center, School of Data Science & Engineering, East China Normal University, Shanghai 200062, China
| | - Jun Zheng
- The Computer Center, School of Data Science & Engineering, East China Normal University, Shanghai 200062, China
| | - Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|