1
|
Ju P, Lu W, Zhang G, Wang S, Li A, Zhang Q, Jiang L, Zhang E, Qu F. Highly efficient removal and real-time visual detection of fluoride ions using ratiometric CAU-10-NH 2@RhB: Probe design, sensing performance, and practical applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135659. [PMID: 39208635 DOI: 10.1016/j.jhazmat.2024.135659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The extensive use of fluoride in agriculture, industry, medicine, and daily necessities has raised growing concerns about fluoride residue. To date, real-time visual detection and efficient removal of fluoride ions from water remain greatly desirable. Herein, nano-CAU-10-NH2@RhB is introduced as a ratiometric fluorescent probe and efficient scavenger for the intelligent detection and removal of fluoride ions. CAU-10-NH2@RhB is readily obtained through one-pot synthesis and exhibits high sensitivity and selectivity for real-time fluoride ion detection, with a naked-eye distinguishable color change from pink to blue. A portable device for point-of-care testing was developed based on color hue analysis readout using a smartphone. A quantitative response was achieved across a wide concentration range, with a detection limit of 54.2 nM. Adsorption experiments suggest that nano-CAU-10-NH2@RhB serves as an efficient fluoride ion scavenger, with a fluoride adsorption capacity of 49.3 mg/g. Moreover, the mechanistic study revealed that hydrogen bonds formed between fluoride ions and amino groups of CAU-10-NH2@RhB are crucial for the detection and adsorption of fluoride ions. This analysis platform was also used for point-of-care quantitative visual detection of fluoride ions in food, water, and toothpaste.
Collapse
Affiliation(s)
- Ping Ju
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Wenhui Lu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Guixue Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Shuping Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Anzhang Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Qingxiang Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Long Jiang
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ensheng Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Fengli Qu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| |
Collapse
|
2
|
Li Z, Meng F, Li R, Fang Y, Cui Y, Qin Y, Zhang M. Amino-functionalized Fe(III)-Based MOF for the high-efficiency extraction and ultrasensitive colorimetric detection of tetracycline. Biosens Bioelectron 2023; 234:115294. [PMID: 37126877 DOI: 10.1016/j.bios.2023.115294] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
In order to achieve the simultaneous extraction and detection of tetracycline (TC) in milk, the amino-functionalized Fe-based metal-organic frameworks (NH2-MIL-88B) was synthesized via a solvothermal method with Fe3+ and 2-aminoterephthalic acid (NH2-BDC) as precursor. Thanks to the unique structure of NH2-MIL-88B, it could be used to highly effective extract of TC in milk. More interestedly, the introduced -NH2 could react with -OH from TC by a hydrogen-bonding interaction to cause the electronic interactions that enhances the peroxidase-like activity of NH2-MIL-88B, which result in the enhancement of Fenton reaction by the transfer of the electron between TC and NH2-MIL-88B. Under the optimal testing conditions, the linear absorbance response is well correlated with the TC concentration range of 50-1000 nM, which can reach a low LOD of 46.75 nM. Besides, the sensor exhibits excellent selectivity to TC, and the proposed strategy can also be applied to milk with good recovery (83.33-107.00%). Finally, the NH2-MIL-88B and cellulose acetate (CA) are combined to form nanozyme hybrid membranes through the non-solvent induced phase separation method, which can be used to prepare point-of-care testing (POCT) for rapid and in-situ detection of TC.
Collapse
Affiliation(s)
- Zongda Li
- College of Life Science & Technology, Xinjiang University, Xinjiang, 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang, 830046, China
| | - Fanxing Meng
- College of Life Science & Technology, Xinjiang University, Xinjiang, 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang, 830046, China
| | - Ruizhi Li
- College of Life Science & Technology, Xinjiang University, Xinjiang, 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang, 830046, China
| | - Yan Fang
- College of Life Science & Technology, Xinjiang University, Xinjiang, 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang, 830046, China
| | - Yincang Cui
- Physics and Chemistry Analysis Center, Xinjiang University, Xinjiang, 830046, China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Xinjiang, 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang, 830046, China.
| | - Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Xinjiang, 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang, 830046, China.
| |
Collapse
|
3
|
Hua Y, Ahmadi Y, Kim KH. Novel strategies for the formulation and processing of aluminum metal-organic framework-based sensing systems toward environmental monitoring of metal ions. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130422. [PMID: 36434918 DOI: 10.1016/j.jhazmat.2022.130422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Aluminum is a relatively inexpensive and abundant metal for the mass production of metal-organic frameworks (MOFs). Aluminum-based MOFs (Al-MOFs) have drawn a good deal of research interest due to their unique properties for diverse applications (e.g., excellent chemical and structural stability). This review has been organized to highlight the current progress achieved in the synthesis/functionalization of Al-MOF materials with the special emphasis on their sensing application, especially toward metal ion pollutants in the liquid phase. To learn more about the utility of Al-MOF-based sensing systems, their performances have been evaluated for diverse metallic components in reference to many other types of sensing systems (in terms of the key quality assurance (QA) criteria such as limit of detection (LOD)). Finally, the challenges and outlook for Al-MOF-based sensing systems are discussed to help expand their real-world applications.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
4
|
Tran TV, Jalil AA, Nguyen DTC, Alhassan M, Nabgan W, Cao ANT, Nguyen TM, Vo DVN. A critical review on the synthesis of NH 2-MIL-53(Al) based materials for detection and removal of hazardous pollutants. ENVIRONMENTAL RESEARCH 2023; 216:114422. [PMID: 36162476 DOI: 10.1016/j.envres.2022.114422] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, emerging hazardous pollutants have caused many harmful effects on the environment and human health, calling for the state of the art methods for detection, qualification, and treatment. Metal-organic frameworks are porous, flexible, and versatile materials with unique structural properties, which can solve such problems. In this work, we reviewed the synthesis, activation, and characterization, and potential applications of NH2-MIL-53(Al). This material exhibited intriguing breathing effects, and obtained very high surface areas (182.3-1934 m2/g) with diverse morphologies. More importantly, NH2-MIL-53(Al) based materials could be used for the detection and removal of various toxic pollutants such as organic dyes, pharmaceuticals, herbicides, insecticides, phenols, heavy metals, and fluorides. We shed light on plausible adsorption mechanisms such as hydrogen bonds, π-π stacking interactions, and electrostatic interactions onto NH2-MIL-53(Al) adsorbents. Interestingly, NH2-MIL-53(Al) based adsorbents could be recycled for many cycles with high stability. This review also recommended that NH2-MIL-53(Al) based materials can be a good platform for the environmental remediation fields.
Collapse
Affiliation(s)
- Thuan Van Tran
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - Duyen Thi Cam Nguyen
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Mansur Alhassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Department of Chemistry, Sokoto State University, PMB, 2134, Airport Road, Sokoto, Nigeria
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007, Tarragona, Spain
| | - Anh Ngoc T Cao
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Tung M Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Dai-Viet N Vo
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
5
|
Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Metal–organic frameworks (MOFs) for the efficient removal of contaminants from water: Underlying mechanisms, recent advances, challenges, and future prospects. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214595] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Li Y, Pang J, Bu XH. Multi-functional metal-organic frameworks for detection and removal of water pollutions. Chem Commun (Camb) 2022; 58:7890-7908. [DOI: 10.1039/d2cc02738k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water pollutions have caused serious threats to the aquatic environment and human health, it is of great significance to monitor and control their contents in water. Compared with the traditional...
Collapse
|
8
|
Alhaddad M, El-Sheikh SM. Selective and Fast Detection of Fluoride-Contaminated Water Based on a Novel Salen-Co-MOF Chemosensor. ACS OMEGA 2021; 6:15182-15191. [PMID: 34151097 PMCID: PMC8210401 DOI: 10.1021/acsomega.1c01424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
The development of selective and fast optical sensitive chemosensors for the detection and recognition of different cations and anions in a domain is still a challenge in biological, industrial, and environmental fields. Herein, we report a novel approach for the detection and determination of fluoride ion (F-) sensing based on a salen-cobalt metal-organic framework (Co(II)-MOF). By a simple method, the Co(II)-MOF was synthesized and characterized using several tools to elucidate the structure and morphology. The photoluminescence (PL) spectrum of the Co(II)-MOF (100.0 nM/L) was examined versus different ionic species like F-, Br-, Cl-, I-, SO4 2-, and NO3 - and some cationic species like Mg2+, Ca2+, Na+, and K+. In the case of F- ions, the PL intensity of the Co(II)-MOF was scientifically enhanced with a remarkable red shift. With the increase of F- concentration, the Co(II)-MOF PL emission spectrum was also professionally enhanced. The limit of detection (LOD) for the Co(II)-MOF chemosensor was 0.24 μg/L, while the limit of quantification (LOQ) was 0.72 μg/L. Moreover, a comparison of the Co(II)-MOF optical approach with other published reports was studied, and the mechanism of interaction was also investigated. Additionally, the applicability of the current Co(II)-MOF approach in different real water samples, such as tap water, drinking water, Nile River water, and wastewater, was extended. This easy-to-use future sensor provides reliable detection of F- in everyday applications for nonexpert users, especially in remote rural areas.
Collapse
Affiliation(s)
- Maha Alhaddad
- Department
of Chemistry, Faculty of Science, King Abdulaziz
University, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia
| | - Said M. El-Sheikh
- Nanomaterials
and Nanotechnology Department, Central Metallurgical
R & D Institute, Cairo 11421, Egypt
| |
Collapse
|