1
|
Zhou J, Wang X, Jia M, He X, Pan H, Chen J. Ultrafast spectroscopy study of DNA photophysics after proflavine intercalation. J Chem Phys 2024; 160:124305. [PMID: 38526107 DOI: 10.1063/5.0194608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Proflavine (PF), an acridine DNA intercalating agent, has been widespread applied as an anti-microbial and topical antiseptic agent due to its ability to suppress DNA replication. On the other hand, various studies show that PF intercalation to DNA can increase photogenotoxicity and has potential chances to induce carcinomas of skin appendages. However, the effects of PF intercalation on the photophysical and photochemical properties of DNA have not been sufficiently explored. In this study, the excited state dynamics of the PF intercalated d(GC)9 • d(GC)9 and d(AT)9 • d(AT)9 DNA duplex are investigated in an aqueous buffer solution. Under 267 nm excitation, we observed ultrafast charge transfer (CT) between PF and d(GC)9 • d(GC)9 duplex, generating a CT state with an order of magnitude longer lifetime compared to that of the intrinsic excited state reported for the d(GC)9 • d(GC)9 duplex. In contrast, no excited state interaction was detected between PF and d(AT)9 • d(AT)9. Nevertheless, a localized triplet state with a lifetime over 5 µs was identified in the PF-d(AT)9 • d(AT)9 duplex.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Menghui Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiaoxiao He
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Haifeng Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
2
|
Han Y, Wang X, He X, Jia M, Pan H, Chen J. Excited State Kinetics of Benzo[a]pyrene Is Affected by Oxygen and DNA. Molecules 2023; 28:5269. [PMID: 37446927 DOI: 10.3390/molecules28135269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Benzo[a]pyrene is a widespread environmental pollutant and a strong carcinogen. It is important to understand its bio-toxicity and degradation mechanism. Herein, we studied the excited state dynamics of benzo[a]pyrene by using time-resolved fluorescence and transient absorption spectroscopic techniques. For the first time, it is identified that benzo[a]pyrene in its singlet excited state could react with oxygen, resulting in fluorescence quenching. Additionally, effective intersystem crossing can occur from its singlet state to the triplet state. Furthermore, the interaction between the excited benzo[a]pyrene and ct-DNA can be observed directly and charge transfer between benzo[a]pyrene and ct-DNA may be the reason. These results lay a foundation for further understanding of the carcinogenic mechanism of benzo[a]pyrene and provide insight into the photo-degradation mechanism of this molecule.
Collapse
Affiliation(s)
- Yunxia Han
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiaoxiao He
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Menghui Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Haifeng Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Excited-State Dynamics of Proflavine after Intercalation into DNA Duplex. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238157. [PMID: 36500248 PMCID: PMC9738913 DOI: 10.3390/molecules27238157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Proflavine is an acridine derivative which was discovered as one of the earliest antibacterial agents, and it has been proven to have potential application to fields such as chemotherapy, photobiology and solar-energy conversion. In particular, it is well known that proflavine can bind to DNA with different modes, and this may open addition photochemical-reaction channels in DNA. Herein, the excited-state dynamics of proflavine after intercalation into DNA duplex is studied using femtosecond time-resolved spectroscopy, and compared with that in solution. It is demonstrated that both fluorescence and the triplet excited-state generation of proflavine were quenched after intercalation into DNA, due to ultrafast non-radiative channels. A static-quenching mechanism was identified for the proflavine-DNA complex, in line with the spectroscopy data, and the excited-state deactivation mechanism was proposed.
Collapse
|
4
|
Han Y, Jia Y, Wang X, Chen Z, Jin P, Jia M, Pan H, Sun Z, Chen J. Ultrafast Excited State Dynamics of Two Non-emissive Flavonoids that Undergo Excited State Intramolecular Proton Transfer in Solution. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Wu P, Wang X, Pan H, Chen J. Direct Observation of Excitation Wavelength-Dependent Ultrafast Intersystem Crossing in Cytosine Nucleoside Solution. J Phys Chem B 2022; 126:7975-7980. [PMID: 36179273 DOI: 10.1021/acs.jpcb.2c05865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A triplet excited state can lead to different DNA photolesions, especially in cytosine and its nucleoside/nucleotide as they are hotspots for DNA mutations. However, the triplet state generation mechanism is in controversy, and experimental evidence of ultrafast intersystem crossing (ISC) has not been registered in these molecules. In this work, ultrafast ISC is directly observed in 2'-deoxycytidine (dCyd) solution by using femtosecond transient absorption spectroscopy. Surprisingly, we demonstrate that ISC in dCyd is sensitive to the excitation wavelength, and a spin-vibronic ISC mechanism is proposed. This finding is the last piece of the dCyd excited-state deactivation mechanism puzzle and sets the base for further investigation of triplet state-involved photophysics and photochemistry in dCyd-containing DNA.
Collapse
Affiliation(s)
- Peicong Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Haifeng Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
6
|
Wang D, Wang X, Jiang Y, Cao S, Jin P, Pan H, Sun H, Sun Z, Chen J. Excited State Dynamics of Methylated Guanosine Derivatives Revealed by Femtosecond Time-resolved Spectroscopy. Photochem Photobiol 2022; 98:1008-1016. [PMID: 35203108 DOI: 10.1111/php.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/20/2022] [Indexed: 11/28/2022]
Abstract
Methylated DNA/RNA nucleobases are important epigenetic marks in living species and play an important role for targeted therapies. Moreover, they could bring significant changes to the photo-stability of nucleic acid, leading these sites become mutational hotspots for disease such as skin cancer. While a number of studies have demonstrated the relationship between excited state dynamics and the biological function of methylated cytosine in DNA, investigations aimed at unraveling the excited state dynamics of methylated guanosine in RNA have been largely overlooked. In this work, influence of methylation on the excited state dynamics of guanosine is studied by using femtosecond time-resolved spectroscopy. Our results suggest that the effect of methyl substitution on the photophysical properties of guanosine is position sensitive. N1-methylguanosine shows very similar excited state dynamics as that in guanosine, while almost one order of magnitude longer lifetime of the La state is observed in N2, N2-dimethylguanosine. Notably, N7-methylation can lead to a new minimum on the La state, which shows a two orders of magnitude longer excited state lifetime compared with guanosine. These findings not only help understanding excited state dynamics of methylated guanosines, but also lay the foundation for further studying DNA/RNA strands incorporated with these bases.
Collapse
Affiliation(s)
- Danhong Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Simin Cao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Peipei Jin
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Haifeng Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|