1
|
Yang D, Tian Y, Min Y, He Z, Wu G, Yang X. Time-resolved measurements of subpicosecond excited-state lifetimes of high-lying Rydberg states in pyrrole. Phys Chem Chem Phys 2025; 27:4467-4474. [PMID: 39932039 DOI: 10.1039/d4cp04838e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
We report the ultrafast decay dynamics of pyrrole upon excitation in the vacuum ultraviolet region using femtosecond time-resolved photoelectron spectroscopy in combination with two-photon absorption. With the two-photon pump energy up to ∼6.78 eV, pyrrole is excited to the 1B2 valence and Rydberg states, i.e., the first 1B2(ππ*) valence state and the 1B2(π3d) Rydberg state. The former is at high levels of vibrational excitation and has an extremely short lifetime of <30 fs, while the latter is in the vibrational ground state and decays with a lifetime of about 400 fs. As the excitation energy slightly increases, the 1B2(π3d) vibrational states are populated and decay in 210-260 fs. We propose that the ultrafast deactivation pathway of the 1B2(π3d) Rydberg state is internal conversion to the lower-lying 1B2(ππ*) state. At higher excitation energies, other valence states, such as the second 1B2(ππ*) state, should make a main contribution to the absorption and a series of other higher-lying Rydberg states with lifetimes of hundreds of femtoseconds are also involved. This study provides direct time-resolved measurements of subpicosecond excited-state lifetimes for high-lying Rydberg states in bare pyrrole.
Collapse
Affiliation(s)
- Dongyuan Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
| | - Yuhuan Tian
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Min
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
| | - Zhigang He
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Feng B, Wu W, He Z, Yang D, Wu G, Yang X. Ultrafast Decay Dynamics of the 2 1ππ* Electronic State of N-Methyl-2-pyridone. J Phys Chem A 2024. [PMID: 38690846 DOI: 10.1021/acs.jpca.4c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The ultrafast decay dynamics of N-methyl-2-pyridone upon excitation in the near-ultraviolet range of 261.5-227.9 nm is investigated using the femtosecond time-resolved photoelectron spectroscopy method. Irradiation at 261.5 nm prepares N-methyl-2-pyridone molecules with high vibrational levels in the 11ππ* state. The radiation-less decay to the ground state via internal conversion is suggested to be the dominant channel for the 11ππ* state with large vibrational excess energy, which is revealed by a lifetime of 1.6 ± 0.2 ps. As the pump wavelength decreases, we found that irradiation at 238.5 and 227.9 nm results in the population of the 21ππ* state. This is in agreement with the assignment of the vapor-phase UV absorption bands of N-methyl-2-pyridone. On the basis of the detailed analysis of our measured time-resolved photoelectron spectra at all pump wavelengths, we conclude that the 21ππ* state has an ultrashort lifetime of 50 ± 10 fs. In addition, the S1(11ππ*) state is subsequently populated via internal conversion and decays over a lifetime of 680-620 fs. The most probable whole deactivation pathway of the 21ππ* state is discussed. This experimental study provides new insights into the excitation energy-dependent decay dynamics of electronically excited N-methyl-2-pyridone.
Collapse
Affiliation(s)
- Baihui Feng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang He
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Dongyuan Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Feng B, Wu W, Yang S, He Z, Fang B, Yang D, Wu G, Yang X. Insights into ultrafast decay dynamics of electronically excited pyridine- N-oxide. Phys Chem Chem Phys 2024; 26:8308-8317. [PMID: 38389467 DOI: 10.1039/d3cp06187f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The ultrafast decay dynamics of pyridine-N-oxide upon excitation in the near-ultraviolet range of 340.2-217.6 nm is investigated using the femtosecond time-resolved photoelectron imaging technique. The time-resolved photoelectron spectra and photoelectron angular distributions at all pump wavelengths are carefully analyzed and the following view is derived: at the longest pump wavelengths (340.2 and 325.6 nm), pyridine-N-oxide is excited to the S1(1ππ*) state with different vibrational levels. The depopulation rate of the S1 state shows a marked dependence on vibrational energy and mode, and the lifetime is in the range of 1.4-160 ps. At 289.8 and 280.5 nm, both the second 1ππ* state and the S1 state are initially prepared. The former has an extremely short lifetime of ∼60 fs, which indicates that the ultrafast deactivation pathway such as a rapid internal conversion to one close-lying state is its dominant decay channel, while the latter is at high levels of vibrational excitation and decays within the range of 380-520 fs. At the shortest pump wavelengths (227.3 and 217.6 nm), another excited state of Rydberg character is mostly excited. We assign this state to the 3s Rydberg state which has a lifetime of 0.55-2.2 ps. This study provides a comprehensive picture of the ultrafast excited-state decay dynamics of the photoexcited pyridine-N-oxide molecule.
Collapse
Affiliation(s)
- Baihui Feng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaikang Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhigang He
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
| | - Benjie Fang
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Dongyuan Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Feng B, Yang D, He Z, Fang B, Wu G, Yang X. Excitation Energy-Dependent Decay Dynamics of the S 1 State of N-Methyl-2-pyridone. J Phys Chem A 2023; 127:10139-10146. [PMID: 38058157 DOI: 10.1021/acs.jpca.3c05745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The UV-induced decay dynamics of N-methyl-2-pyridone is investigated using a femtosecond time-resolved photoelectron spectroscopy method. Irradiation in the wavelength range of 339.3-258.9 nm prepares N-methyl-2-pyridone molecules with very different vibrational levels of the S1(11ππ*) state. For v' = 0 (origin) and a few low-energy vibrational levels slightly above the S1 state origin, the radiative decay channel is in operation for some specific vibrations. This is revealed by the excited-state lifetime of ≫1 ns. In addition, some other nearby S1 vibronic states have a much shorter lifetime in the range of several picoseconds to a few tens of picoseconds, indicating that the radiation-less decay to the ground state (S0) via internal conversion is the dominant channel for them. As the pump wavelength slightly decreases, the radiative decay is suddenly not important at all, and the deactivation rate of the S1 state becomes faster. At shorter pump wavelengths, the lifetime of highly excited vibrational states of the S1 state further decreases with the increase in the vibrational excess energy. This study provides quantitative information about the excitation energy-dependent decay dynamics of the S1 state of N-methyl-2-pyridone. Methyl substitution effects on the excited-state dynamics of 2-pyridone are also discussed.
Collapse
Affiliation(s)
- Baihui Feng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongyuan Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Zhigang He
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Benjie Fang
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Yang D, Min Y, Feng B, Yang X, Wu G. Vibrational-state dependent decay dynamics of 2-pyridone excited to the S 1 electronic state. Phys Chem Chem Phys 2022; 24:22710-22715. [PMID: 36106839 DOI: 10.1039/d2cp03279a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The S1(1ππ*) state decay dynamics of 2-pyridone excited around the 000 band origin is investigated using femtosecond time-resolved photoelectron imaging technique. At a pump wavelength of 334.0 nm, the vibrational ground state and a few low energy vibrational states covered by the bandwidth of the pump laser pulses are excited. The lifetimes of the vibrational states show strong dependence on the vibrational energy and mode. A quantum beat between two lowest energy vibrational states is also observed. This study provides quantitative information about the vibrational-state dependent lifetime of the S1 state of 2-pyridone.
Collapse
Affiliation(s)
- Dongyuan Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
| | - Yanjun Min
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baihui Feng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China. .,Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
| |
Collapse
|
6
|
|