Chemistry-informed molecular graph as reaction descriptor for machine-learned retrosynthesis planning.
Proc Natl Acad Sci U S A 2022;
119:e2212711119. [PMID:
36191228 PMCID:
PMC9564830 DOI:
10.1073/pnas.2212711119]
[Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infusing "chemical wisdom" should improve the data-driven approaches that rely exclusively on historical synthetic data for automatic retrosynthesis planning. For this purpose, we designed a chemistry-informed molecular graph (CIMG) to describe chemical reactions. A collection of key information that is most relevant to chemical reactions is integrated in CIMG:NMR chemical shifts as vertex features, bond dissociation energies as edge features, and solvent/catalyst information as global features. For any given compound as a target, a product CIMG is generated and exploited by a graph neural network (GNN) model to choose reaction template(s) leading to this product. A reactant CIMG is then inferred and used in two GNN models to select appropriate catalyst and solvent, respectively. Finally, a fourth GNN model compares the two CIMG descriptors to check the plausibility of the proposed reaction. A reaction vector is obtained for every molecule in training these models. The chemical wisdom of reaction propensity contained in the pretrained reaction vectors is exploited to autocategorize molecules/reactions and to accelerate Monte Carlo tree search (MCTS) for multistep retrosynthesis planning. Full synthetic routes with recommended catalysts/solvents are predicted efficiently using this CIMG-based approach.
Collapse