1
|
Kachwala A, Rizi MM, Pierce CM, Filippetto D, Maxson J, Karkare S. Harnessing Plasmonic Interference for Nanoscale Ultrafast Electron Sources. PHYSICAL REVIEW LETTERS 2024; 133:185001. [PMID: 39547168 DOI: 10.1103/physrevlett.133.185001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/04/2024] [Accepted: 09/13/2024] [Indexed: 11/17/2024]
Abstract
In this Letter we demonstrate the use of plasmonic focusing in conjunction with nonlinear photoemission to develop geometrically flat nanoscale electron sources with less than 40 pm-rad root mean squared (rms) normalized transverse emittance. Circularly polarized light is incident on a gold Archimedean spiral structure to generate surface-plasmon polaritons that interfere coherently at the center resulting in a 50 nm rms emission area. Such a nanostructured flat surface enables simultaneous spatiotemporal confinement of emitted electrons at the nanometer and femtosecond level and can be used as an advanced electron source for high-repetition-rate ultrafast electron diffraction and microscopy experiments as well as the next generation of miniaturized particle accelerators.
Collapse
|
2
|
Diaz FR, Mero M, Amini K. High-repetition-rate ultrafast electron diffraction with direct electron detection. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:054302. [PMID: 39346930 PMCID: PMC11438501 DOI: 10.1063/4.0000256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024]
Abstract
Ultrafast electron diffraction (UED) instruments typically operate at kHz or lower repetition rates and rely on indirect detection of electrons. However, these experiments encounter limitations because they are required to use electron beams containing a relatively large number of electrons (≫100 electrons/pulse), leading to severe space-charge effects. Consequently, electron pulses with long durations and large transverse diameters are used to interrogate the sample. Here, we introduce a novel UED instrument operating at a high repetition rate and employing direct electron detection. We operate significantly below the severe space-charge regime by using electron beams containing 1-140 electrons per pulse at 30 kHz. We demonstrate the ability to detect time-resolved signals from thin film solid samples with a difference contrast signal, Δ I / I 0 , and an instrument response function as low as 10-5 and 184-fs (FWHM), respectively, without temporal compression. Overall, our findings underscore the importance of increasing the repetition rate of UED experiments and adopting a direct electron detection scheme, which will be particularly impactful for gas-phase UED. Our newly developed scheme enables more efficient and sensitive investigations of ultrafast dynamics in photoexcited samples using ultrashort electron beams.
Collapse
Affiliation(s)
- F. R. Diaz
- Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - M. Mero
- Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - K. Amini
- Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, Germany
| |
Collapse
|
3
|
Denham P, Yang Y, Guo V, Fisher A, Shen X, Xu T, England RJ, Li RK, Musumeci P. High energy electron diffraction instrument with tunable camera length. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:024302. [PMID: 38532924 PMCID: PMC10965247 DOI: 10.1063/4.0000240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Ultrafast electron diffraction (UED) stands as a powerful technique for real-time observation of structural dynamics at the atomic level. In recent years, the use of MeV electrons from radio frequency guns has been widely adopted to take advantage of the relativistic suppression of the space charge effects that otherwise limit the temporal resolution of the technique. Nevertheless, there is not a clear choice for the optimal energy for a UED instrument. Scaling to beam energies higher than a few MeV does pose significant technical challenges, mainly related to the inherent increase in diffraction camera length associated with the smaller Bragg angles. In this study, we report a solution by using a compact post-sample magnetic optical system to magnify the diffraction pattern from a crystal Au sample illuminated by an 8.2 MeV electron beam. Our method employs, as one of the lenses of the optical system, a triplet of compact, high field gradients (>500 T/m), small-gap (3.5 mm) Halbach permanent magnet quadrupoles. Shifting the relative position of the quadrupoles, we demonstrate tuning the magnification by more than a factor of two, a 6× improvement in camera length, and reciprocal space resolution better than 0.1 Å-1 in agreement with beam transport simulations.
Collapse
Affiliation(s)
- P. Denham
- Department of Physics and Astronomy, UCLA, Los Angeles, California 90095, USA
| | - Y. Yang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - V. Guo
- Department of Physics and Astronomy, UCLA, Los Angeles, California 90095, USA
| | - A. Fisher
- Department of Physics and Astronomy, UCLA, Los Angeles, California 90095, USA
| | - X. Shen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - T. Xu
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - R. J. England
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - R. K. Li
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - P. Musumeci
- Department of Physics and Astronomy, UCLA, Los Angeles, California 90095, USA
| |
Collapse
|
4
|
Sutter TM, Lee JSH, Kulkarni AV, Musumeci P, Kogar A. Vector-based feedback of continuous wave radiofrequency compression cavity for ultrafast electron diffraction. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:024303. [PMID: 38532925 PMCID: PMC10965248 DOI: 10.1063/4.0000231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
The temporal resolution of ultrafast electron diffraction at weakly relativistic beam energies (≲ 100 keV) suffers from space-charge induced electron pulse broadening. We describe the implementation of a radio frequency (RF) cavity operating in the continuous wave regime to compress high repetition rate electron bunches from a 40.4 kV DC photoinjector for ultrafast electron diffraction applications. Active stabilization of the RF amplitude and phase through a feedback loop based on the demodulated in-phase and quadrature components of the RF signal is demonstrated. This scheme yields 144 ± 19 fs RMS temporal resolution in pump-probe studies.
Collapse
Affiliation(s)
- Thomas M. Sutter
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Joshua S. H. Lee
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Atharva V. Kulkarni
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Pietro Musumeci
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Anshul Kogar
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
5
|
Moradifar P, Liu Y, Shi J, Siukola Thurston ML, Utzat H, van Driel TB, Lindenberg AM, Dionne JA. Accelerating Quantum Materials Development with Advances in Transmission Electron Microscopy. Chem Rev 2023. [PMID: 37979189 DOI: 10.1021/acs.chemrev.2c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, superconductors, quantum dots, color center-hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, superconductivity, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the material's detailed atomic-scale structure, including atomic defects, dopants, and lattice stacking. In this review, we describe how progress in the field of electron microscopy (EM), including in situ and in operando EM, can accelerate advances in quantum materials and quantum excitations. We begin by describing fundamental EM principles and operation modes. We then discuss various EM methods such as (i) EM spectroscopies, including electron energy loss spectroscopy (EELS), cathodoluminescence (CL), and electron energy gain spectroscopy (EEGS); (ii) four-dimensional scanning transmission electron microscopy (4D-STEM); (iii) dynamic and ultrafast EM (UEM); (iv) complementary ultrafast spectroscopies (UED, XFEL); and (v) atomic electron tomography (AET). We describe how these methods could inform structure-function relations in quantum materials down to the picometer scale and femtosecond time resolution, and how they enable precision positioning of atomic defects and high-resolution manipulation of quantum materials. For each method, we also describe existing limitations to solve open quantum mechanical questions, and how they might be addressed to accelerate progress. Among numerous notable results, our review highlights how EM is enabling identification of the 3D structure of quantum defects; measuring reversible and metastable dynamics of quantum excitations; mapping exciton states and single photon emission; measuring nanoscale thermal transport and coupled excitation dynamics; and measuring the internal electric field and charge density distribution of quantum heterointerfaces- all at the quantum materials' intrinsic atomic and near atomic-length scale. We conclude by describing open challenges for the future, including achieving stable sample holders for ultralow temperature (below 10K) atomic-scale spatial resolution, stable spectrometers that enable meV energy resolution, and high-resolution, dynamic mapping of magnetic and spin fields. With atomic manipulation and ultrafast characterization enabled by EM, quantum materials will be poised to integrate into many of the sustainable and energy-efficient technologies needed for the 21st century.
Collapse
Affiliation(s)
- Parivash Moradifar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yin Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jiaojian Shi
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | | | - Hendrik Utzat
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aaron M Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Duncan CJR, Kaemingk M, Li WH, Andorf MB, Bartnik AC, Galdi A, Gordon M, Pennington CA, Bazarov IV, Zeng HJ, Liu F, Luo D, Sood A, Lindenberg AM, Tate MW, Muller DA, Thom-Levy J, Gruner SM, Maxson JM. Multi-scale time-resolved electron diffraction: A case study in moiré materials. Ultramicroscopy 2023; 253:113771. [PMID: 37301082 DOI: 10.1016/j.ultramic.2023.113771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/09/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Ultrafast-optical-pump - structural-probe measurements, including ultrafast electron and x-ray scattering, provide direct experimental access to the fundamental timescales of atomic motion, and are thus foundational techniques for studying matter out of equilibrium. High-performance detectors are needed in scattering experiments to obtain maximum scientific value from every probe particle. We deploy a hybrid pixel array direct electron detector to perform ultrafast electron diffraction experiments on a WSe2/MoSe2 2D heterobilayer, resolving the weak features of diffuse scattering and moiré superlattice structure without saturating the zero order peak. Enabled by the detector's high frame rate, we show that a chopping technique provides diffraction difference images with signal-to-noise at the shot noise limit. Finally, we demonstrate that a fast detector frame rate coupled with a high repetition rate probe can provide continuous time resolution from femtoseconds to seconds, enabling us to perform a scanning ultrafast electron diffraction experiment that maps thermal transport in WSe2/MoSe2 and resolves distinct diffusion mechanisms in space and time.
Collapse
Affiliation(s)
- C J R Duncan
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, NY 14850, USA.
| | - M Kaemingk
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, NY 14850, USA
| | - W H Li
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, NY 14850, USA
| | - M B Andorf
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, NY 14850, USA
| | - A C Bartnik
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, NY 14850, USA
| | - A Galdi
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, NY 14850, USA
| | - M Gordon
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, NY 14850, USA
| | - C A Pennington
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, NY 14850, USA
| | - I V Bazarov
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, NY 14850, USA
| | - H J Zeng
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - F Liu
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - D Luo
- SLAC National Accelerator Laboratory, Menlo Park, CA 94205, USA
| | - A Sood
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540, USA; Princeton Materials Institute, Princeton University, Princeton, NJ 08540, USA
| | - A M Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - M W Tate
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - D A Muller
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA; School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - J Thom-Levy
- Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, NY 14853, USA
| | - S M Gruner
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA
| | - J M Maxson
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
7
|
Durham DB, Ophus C, Siddiqui KM, Minor AM, Filippetto D. Accurate quantification of lattice temperature dynamics from ultrafast electron diffraction of single-crystal films using dynamical scattering simulations. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:064302. [PMID: 36484070 PMCID: PMC9726223 DOI: 10.1063/4.0000170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
In ultrafast electron diffraction (UED) experiments, accurate retrieval of time-resolved structural parameters, such as atomic coordinates and thermal displacement parameters, requires an accurate scattering model. Unfortunately, kinematical models are often inaccurate even for relativistic electron probes, especially for dense, oriented single crystals where strong channeling and multiple scattering effects are present. This article introduces and demonstrates dynamical scattering models tailored for quantitative analysis of UED experiments performed on single-crystal films. As a case study, we examine ultrafast laser heating of single-crystal gold films. Comparison of kinematical and dynamical models reveals the strong effects of dynamical scattering within nm-scale films and their dependence on sample topography and probe kinetic energy. Applying to UED experiments on an 11 nm thick film using 750 keV electron probe pulses, the dynamical models provide a tenfold improvement over a comparable kinematical model in matching the measured UED patterns. Also, the retrieved lattice temperature rise is in very good agreement with predictions based on previously measured optical constants of gold, whereas fitting the Debye-Waller factor retrieves values that are more than three times lower. Altogether, these results show the importance of a dynamical scattering theory for quantitative analysis of UED and demonstrate models that can be practically applied to single-crystal materials and heterostructures.
Collapse
Affiliation(s)
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Khalid M. Siddiqui
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | - Daniele Filippetto
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|