1
|
Cha Y, Ki H, Im D, Lee Y, Lee S, Kim J, Lee JH, Kim J, Ihee H. The carbon-iodine bond cleavage and isomerization of iodoform visualized with femtosecond X-ray liquidography. Chem Sci 2024:d4sc04604h. [PMID: 39483255 PMCID: PMC11523838 DOI: 10.1039/d4sc04604h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
Iodoform (CHI3) has garnered significant attention for its unique ability to induce photo-cyclopropanation of olefins by releasing an iodine radical through C-I bond cleavage. However, the detailed mechanism underlying CHI3 photodissociation is still not fully understood. Here, we elucidate the ultrafast structural dynamics of CHI3 upon photoexcitation using femtosecond time-resolved X-ray liquidography (fs-TRXL) at an X-ray free-electron laser facility. The fs-TRXL data was decomposed into the isotropic and anisotropic data. The isotropic data reveal that the formation of CHI2 and I radicals upon photolysis precedes the emergence of iso-CHI2-I. After a short induction period, two competing geminate recombination pathways of CHI2 and I radicals take place: one pathway leads to the recovery of CHI3, while the other results in the formation of iso-CHI2-I. Additionally, the anisotropic data show how the transient anisotropic distribution of both the species formed upon photoexcitation and the ground-state species depleted upon photoexcitation decays through rotational dephasing. Furthermore, the observed structural dynamics of CHI3 has distinctive differences with that of BiI3, which can be attributed to differences in their central moieties, CH and Bi. Our findings provide insights into the photoinduced reaction dynamics of CHI3, enhancing the understanding of its role in photochemical reactions.
Collapse
Affiliation(s)
- Yongjun Cha
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Hosung Ki
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Donghwan Im
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seonggon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Jungmin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory Pohang 37673 Republic of Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University 100 Inha-ro, Michuhol-gu Incheon 22212 Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
2
|
Heo J, Kim D, Segalina A, Ki H, Ahn DS, Lee S, Kim J, Cha Y, Lee KW, Yang J, Nunes JPF, Wang X, Ihee H. Capturing the generation and structural transformations of molecular ions. Nature 2024; 625:710-714. [PMID: 38200317 PMCID: PMC10808067 DOI: 10.1038/s41586-023-06909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Molecular ions are ubiquitous and play pivotal roles1-3 in many reactions, particularly in the context of atmospheric and interstellar chemistry4-6. However, their structures and conformational transitions7,8, particularly in the gas phase, are less explored than those of neutral molecules owing to experimental difficulties. A case in point is the halonium ions9-11, whose highly reactive nature and ring strain make them short-lived intermediates that are readily attacked even by weak nucleophiles and thus challenging to isolate or capture before they undergo further reaction. Here we show that mega-electronvolt ultrafast electron diffraction (MeV-UED)12-14, used in conjunction with resonance-enhanced multiphoton ionization, can monitor the formation of 1,3-dibromopropane (DBP) cations and their subsequent structural dynamics forming a halonium ion. We find that the DBP+ cation remains for a substantial duration of 3.6 ps in aptly named 'dark states' that are structurally indistinguishable from the DBP electronic ground state. The structural data, supported by surface-hopping simulations15 and ab initio calculations16, reveal that the cation subsequently decays to iso-DBP+, an unusual intermediate with a four-membered ring containing a loosely bound17,18 bromine atom, and eventually loses the bromine atom and forms a bromonium ion with a three-membered-ring structure19. We anticipate that the approach used here can also be applied to examine the structural dynamics of other molecular ions and thereby deepen our understanding of ion chemistry.
Collapse
Affiliation(s)
- Jun Heo
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Doyeong Kim
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Alekos Segalina
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hosung Ki
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Doo-Sik Ahn
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Foundry Business, Samsung Electronics Inc., Hwasung, Gyeonggi, Republic of Korea
| | - Seonggon Lee
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jungmin Kim
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yongjun Cha
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kyung Won Lee
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jie Yang
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - J Pedro F Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Hyotcherl Ihee
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Lee Y, Ki H, Im D, Eom S, Gu J, Lee S, Kim J, Cha Y, Lee KW, Zerdane S, Levantino M, Ihee H. Cerium Photocatalyst in Action: Structural Dynamics in the Presence of Substrate Visualized via Time-Resolved X-ray Liquidography. J Am Chem Soc 2023; 145:23715-23726. [PMID: 37856865 PMCID: PMC10623567 DOI: 10.1021/jacs.3c08166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Indexed: 10/21/2023]
Abstract
[Ce(III)Cl6]3-, with its earth-abundant metal element, is a promising photocatalyst facilitating carbon-halogen bond activation. Still, the structure of the reaction intermediate has yet to be explored. Here, we applied time-resolved X-ray liquidography (TRXL), which allows for direct observation of the structural details of reaction intermediates, to investigate the photocatalytic reaction of [Ce(III)Cl6]3-. Structural analysis of the TRXL data revealed that the excited state of [Ce(III)Cl6]3- has Ce-Cl bonds that are shorter than those of the ground state and that the Ce-Cl bond further contracts upon oxidation. In addition, this study represents the first application of TRXL to both photocatalyst-only and photocatalyst-and-substrate samples, providing insights into the substrate's influence on the photocatalyst's reaction dynamics. This study demonstrates the capability of TRXL in elucidating the reaction dynamics of photocatalysts under various conditions and highlights the importance of experimental determination of the structures of reaction intermediates to advance our understanding of photocatalytic mechanisms.
Collapse
Affiliation(s)
- Yunbeom Lee
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hosung Ki
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Donghwan Im
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seunghwan Eom
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jain Gu
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seonggon Lee
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jungmin Kim
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yongjun Cha
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kyung Won Lee
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Serhane Zerdane
- European
Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Matteo Levantino
- European
Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Hyotcherl Ihee
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|