1
|
Qian Y, Cao J, Han J, Zhang S, Chen W, Lei Z, Cui X, Zheng Z. A statistical analysis method for probability distributions in Erdös-Rényi random networks with preferential cutting-rewiring operation. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1390319. [PMID: 39483422 PMCID: PMC11524867 DOI: 10.3389/fnetp.2024.1390319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
The study of specific physiological processes from the perspective of network physiology has gained recent attention. Modeling the global information integration among the separated functionalized modules in structural and functional brain networks is a central problem. In this article, the preferentially cutting-rewiring operation (PCRO) is introduced to approximatively describe the above physiological process, which consists of the cutting procedure and the rewiring procedure with specific preferential constraints. By applying the PCRO on the classical Erdös-Rényi random network (ERRN), three types of isolated nodes are generated, based on which the common leaves (CLs) are formed between the two hubs. This makes the initially homogeneous ERRN experience drastic changes and become heterogeneous. Importantly, a statistical analysis method is proposed to theoretically analyze the statistical properties of an ERRN with a PCRO. Specifically, the probability distributions of these three types of isolated nodes are derived, based on which the probability distribution of the CLs can be obtained easily. Furthermore, the validity and universality of our statistical analysis method have been confirmed in numerical experiments. Our contributions may shed light on a new perspective in the interdisciplinary field of complexity science and biological science and would be of great and general interest to network physiology.
Collapse
Affiliation(s)
- Yu Qian
- College of Physics and Optoelectronic Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Jiahui Cao
- College of Physics and Optoelectronic Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Jing Han
- College of Physics and Optoelectronic Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Siyi Zhang
- College of Physics and Optoelectronic Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Wentao Chen
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Zhao Lei
- College of Physics and Optoelectronic Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Xiaohua Cui
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Zhigang Zheng
- Institute of Systems Science, Huaqiao University, Xiamen, China
- College of Information Science and Engineering, Huaqiao University, Xiamen, China
- School of Mathematical Sciences, Huaqiao University, Quanzhou, China
| |
Collapse
|
2
|
Ge P, Cheng L, Cao H. Complete synchronization of three-layer Rulkov neuron network coupled by electrical and chemical synapses. CHAOS (WOODBURY, N.Y.) 2024; 34:043127. [PMID: 38587536 DOI: 10.1063/5.0177771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
This paper analyzes the complete synchronization of a three-layer Rulkov neuron network model connected by electrical synapses in the same layers and chemical synapses between adjacent layers. The outer coupling matrix of the network is not Laplacian as in linear coupling networks. We develop the master stability function method, in which the invariant manifold of the master stability equations (MSEs) does not correspond to the zero eigenvalues of the connection matrix. After giving the existence conditions of the synchronization manifold about the nonlinear chemical coupling, we investigate the dynamics of the synchronization manifold, which will be identical to that of a synchronous network by fixing the same parameters and initial values. The waveforms show that the transient chaotic windows and the transient approximate periodic windows with increased or decreased periods occur alternatively before asymptotic behaviors. Furthermore, the Lyapunov exponents of the MSEs indicate that the network with a periodic synchronization manifold can achieve complete synchronization, while the network with a chaotic synchronization manifold can not. Finally, we simulate the effects of small perturbations on the asymptotic regimes and the evolution routes for the synchronous periodic and the non-synchronous chaotic network.
Collapse
Affiliation(s)
- Penghe Ge
- Department of Mathematics, School of Mathematics and Statistics, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Libo Cheng
- Department of Applied Statistics, School of Mathematics and Statistics, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Hongjun Cao
- School of Mathematics and Statistics, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| |
Collapse
|
3
|
Rathore V, Suman A, Jalan S. Synchronization onset for contrarians with higher-order interactions in multilayer systems. CHAOS (WOODBURY, N.Y.) 2023; 33:091105. [PMID: 37729103 DOI: 10.1063/5.0166627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
We investigate the impact of contrarians (via negative coupling) in multilayer networks of phase oscillators having higher-order interactions. We report that the multilayer framework facilitates synchronization onset in the negative pairwise coupling regime. The multilayering strength governs the onset of synchronization and the nature of the phase transition, whereas the higher-order interactions dictate the backward critical coupling. Specifically, the system does not synchronize below a critical value of the multilayering strength. The analytical calculations using the mean-field Ott-Antonsen approach agree with the simulations. The results presented here may be useful for understanding emergent behaviors in real-world complex systems with contrarians and higher-order interactions, such as the brain and social system.
Collapse
Affiliation(s)
- Vasundhara Rathore
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Ayushi Suman
- Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sarika Jalan
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
- Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
4
|
Kongni SJ, Nguefoue V, Njougouo T, Louodop P, Ferreira FF, Tchitnga R, Cerdeira HA. Phase transitions on a multiplex of swarmalators. Phys Rev E 2023; 108:034303. [PMID: 37849080 DOI: 10.1103/physreve.108.034303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/01/2023] [Indexed: 10/19/2023]
Abstract
Dynamics of bidirectionally coupled swarmalators subject to attractive and repulsive couplings is analyzed. The probability of two elements in different layers being connected strongly depends on a defined vision range r_{c} which appears to lead both layers in different patterns while varying its values. Particularly, the interlayer static sync π has been found and its stability is proven. First-order transitions are observed when the repulsive coupling strength σ_{r} is very small for a fixed r_{c} and, moreover, in the absence of the repulsive coupling, they also appear for sufficiently large values of r_{c}. For σ_{r}=0 and for sufficiently small values of r_{c}, both layers achieve a second-order transition in a surprising two steps that are characterized by the drop of the energy of the internal phases while increasing the value of the interlayer attractive coupling σ_{a} and later a smooth jump, up to high energy value where synchronization is achieved. During these transitions, the internal phases present rotating waves with counterclockwise and later clockwise directions until synchronization, as σ_{a} increases. These results are supported by simulations and animations added as supplemental materials.
Collapse
Affiliation(s)
- Steve J Kongni
- Research Unit Condensed Matter, Electronics and Signal Processing, University of Dschang, P. O. Box 67 Dschang, Cameroon and MoCLiS Research Group, Dschang, Cameroon
| | - Venceslas Nguefoue
- Research Unit Condensed Matter, Electronics and Signal Processing, University of Dschang, P. O. Box 67 Dschang, Cameroon and MoCLiS Research Group, Dschang, Cameroon
| | - Thierry Njougouo
- Faculty of Computer Science and naXys Institute, University of Namur, 5000 Namur, Belgium; Namur Institute for Complex Systems (naXys), University of Namur, Belgium; Department of Electrical and Electronic Engineering, Faculty of Engineering and Technology (FET), University of Buea, P. O. Box 63, Buea, Cameroon; and MoCLiS Research Group, Dschang, Cameroon
| | - Patrick Louodop
- Research Unit Condensed Matter, Electronics and Signal Processing, University of Dschang, P. O. Box 67 Dschang, Cameroon; ICTP South American Institute for Fundamental Research, São Paulo State University (UNESP), Instituto de Física Teórica, 01140-070 São Paulo, Brazil; and MoCLiS Research Group, Dschang, Cameroon
| | - Fernando Fagundes Ferreira
- Center for Interdisciplinary Research on Complex Systems, University of Sao Paulo, São Paulo 03828-000, Brazil; and Department of Physics-FFCLRP, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Robert Tchitnga
- Research Unit Condensed Matter, Electronics and Signal Processing, University of Dschang, P. O. Box 67 Dschang, Cameroon
| | - Hilda A Cerdeira
- São Paulo State University (UNESP), Instituto de Física Teórica, 01140-070 São Paulo, Brazil and Epistemic, Gomez & Gomez Ltda. ME, 05305-031 São Paulo, Brazil
| |
Collapse
|
5
|
Andrzejak RG, Espinoso A. Chimera states in multiplex networks: Chameleon-like across-layer synchronization. CHAOS (WOODBURY, N.Y.) 2023; 33:2890080. [PMID: 37163994 DOI: 10.1063/5.0146550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/19/2023] [Indexed: 05/12/2023]
Abstract
Different across-layer synchronization types of chimera states in multilayer networks have been discovered recently. We investigate possible relations between them, for example, if the onset of some synchronization type implies the onset of some other type. For this purpose, we use a two-layer network with multiplex inter-layer coupling. Each layer consists of a ring of non-locally coupled phase oscillators. While oscillators in each layer are identical, the layers are made non-identical by introducing mismatches in the oscillators' mean frequencies and phase lag parameters of the intra-layer coupling. We use different metrics to quantify the degree of various across-layer synchronization types. These include phase-locking between individual interacting oscillators, amplitude and phase synchronization between the order parameters of each layer, generalized synchronization between the driver and response layer, and the alignment of the incoherent oscillator groups' position on the two rings. For positive phase lag parameter mismatches, we get a cascaded onset of synchronization upon a gradual increase of the inter-layer coupling strength. For example, the two order parameters show phase synchronization before any of the interacting oscillator pairs does. For negative mismatches, most synchronization types have their onset in a narrow range of the coupling strength. Weaker couplings can destabilize chimera states in the response layer toward an almost fully coherent or fully incoherent motion. Finally, in the absence of a phase lag mismatch, sufficient coupling turns the response dynamics into a replica of the driver dynamics with the phases of all oscillators shifted by a constant lag.
Collapse
Affiliation(s)
- Ralph G Andrzejak
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
| | - Anaïs Espinoso
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac 10-12, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Adaptive quantitative control for robust H∞ synchronization between multiplex neural networks under stochastic cyber attacks. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Roy T, Chaurasia SS, Cruz JM, Pimienta V, Parmananda P. Modes of synchrony in self-propelled pentanol drops. SOFT MATTER 2022; 18:1688-1695. [PMID: 35146497 DOI: 10.1039/d1sm01488a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report various modes of synchrony observed for a population of two, three and four pentanol drops in a rectangular channel at the air-water interface. Initially, the autonomous oscillations of a single 1-pentanol drop were studied in a ferroin DI water solution pre-mixed with some volume of pentanol. A pentanol drop performs continuous motion on the air-water interface due to Marangoni forces. A linear channel was prepared to study the uniaxial movement of the drop(s). Thereafter, a systematic study of the self-propelled motion of a 1-pentanol drop was reported as a function of the drop volume. Subsequently, the coupled dynamics were studied for two, three and four drops, respectively. We observed anti-phase oscillations in a pair of pentanol drops. In the case of three drops, relay synchronization was observed, wherein consecutive pairs of drops were exhibiting out-of-phase oscillations and alternate drops were performing in-phase oscillations. Four pentanol drops showed two different modes of synchrony: one was relay synchrony and the other was out-of-phase oscillations between two pairs of drops (within a pair, the drops exhibit in-phase oscillations).
Collapse
Affiliation(s)
- Tanushree Roy
- Department of Physics, IIT Bombay, Mumbai 400076, Maharashtra, India.
| | | | - José-Manuel Cruz
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas 29050, Mexico
| | - V Pimienta
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne 31062, Toulouse Cedex 9, France
| | - P Parmananda
- Department of Physics, IIT Bombay, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
8
|
A New Memristive Neuron Map Model and Its Network’s Dynamics under Electrochemical Coupling. ELECTRONICS 2022. [DOI: 10.3390/electronics11010153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A memristor is a vital circuit element that can mimic biological synapses. This paper proposes the memristive version of a recently proposed map neuron model based on the phase space. The dynamic of the memristive map model is investigated by using bifurcation and Lyapunov exponents’ diagrams. The results prove that the memristive map can present different behaviors such as spiking, periodic bursting, and chaotic bursting. Then, a ring network is constructed by hybrid electrical and chemical synapses, and the memristive neuron models are used to describe the nodes. The collective behavior of the network is studied. It is observed that chemical coupling plays a crucial role in synchronization. Different kinds of synchronization, such as imperfect synchronization, complete synchronization, solitary state, two-cluster synchronization, chimera, and nonstationary chimera, are identified by varying the coupling strengths.
Collapse
|
9
|
Zakharova A, Strelkova G, Schöll E, Kurths J. Introduction to focus issue: In memory of Vadim S. Anishchenko: Statistical physics and nonlinear dynamics of complex systems. CHAOS (WOODBURY, N.Y.) 2022; 32:010401. [PMID: 35105142 DOI: 10.1063/5.0082335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Galina Strelkova
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Telegraphenberg A 31, 14473 Potsdam, Germany
| |
Collapse
|
10
|
Rathore V, Kachhvah AD, Jalan S. Catalytic feed-forward explosive synchronization in multilayer networks. CHAOS (WOODBURY, N.Y.) 2021; 31:123130. [PMID: 34972326 DOI: 10.1063/5.0060803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Inhibitory couplings are crucial for the normal functioning of many real-world complex systems. Inhibition in one layer has been shown to induce explosive synchronization in another excitatory (or positive) layer of duplex networks. By extending this framework to multiplex networks, this article shows that inhibition in a single layer can act as a catalyst, leading to explosive synchronization transitions in the rest of the layers feed-forwarded through intermediate layer(s). Considering a multiplex network of coupled Kuramoto oscillators, we demonstrate that the characteristics of the transition emergent in a layer can be entirely controlled by the intra-layer coupling of other layers and the multiplexing strengths. The results presented here are essential to fathom the synchronization behavior of coupled dynamical units in multi-layer systems possessing inhibitory coupling in one of its layers, representing the importance of multiplexing.
Collapse
Affiliation(s)
- Vasundhara Rathore
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Ajay Deep Kachhvah
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sarika Jalan
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
11
|
Abdelouahab MS, Arama A, Lozi R. Bifurcation analysis of a model of tuberculosis epidemic with treatment of wider population suggesting a possible role in the seasonality of this disease. CHAOS (WOODBURY, N.Y.) 2021; 31:123125. [PMID: 34972319 DOI: 10.1063/5.0057635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
In this paper, a novel epidemiological model describing the evolution of tuberculosis in a human population is proposed. This model is of the form SEIR, where S stands for Susceptible people, E for Exposed (infected but not yet infectious) people, I for Infectious people, and R for Recovered people. The main characteristic of this model inspired from the disease biology and some realistic hypothesis is that the treatment is administered not only to infectious but also to exposed people. Moreover, this model is characterized by an open structure, as it considers the transfer of infected or infectious people to other regions more conducive to their care and accepts treatment for exposed or infectious patients coming from other regions without care facilities. Stability and bifurcation of the solutions of this model are investigated. It is found that saddle-focus bifurcation occurs when the contact parameter β passes through some critical values. The model undergoes a Hopf bifurcation when the quality of treatment r is considered as a bifurcation parameter. It is shown also that the system exhibits saddle-node bifurcation, which is a transcritical bifurcation between equilibrium points. Numerical simulations are done to illustrate these theoretical results. Amazingly, the Hopf bifurcation suggests an unexpected and never suggested explanation of seasonality of such a disease, linked to the quality of treatment.
Collapse
Affiliation(s)
- M-S Abdelouahab
- Laboratory of Mathematics and Their Interactions, Abdelhafid Boussouf University Center, Mila 43000, Algeria
| | - A Arama
- School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - R Lozi
- Université Côte d'Azur, CNRS, LJAD, Nice 06108, France
| |
Collapse
|
12
|
Kachhvah AD, Jalan S. Explosive synchronization and chimera in interpinned multilayer networks. Phys Rev E 2021; 104:L042301. [PMID: 34781501 DOI: 10.1103/physreve.104.l042301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/16/2021] [Indexed: 11/07/2022]
Abstract
This Letter investigates the nature of synchronization in multilayered and multiplexed populations in which the interlayer interactions are randomly pinned. First, we show that a multilayer network constructed by setting up all-to-all interlayer connections between the two populations leads to explosive synchronization in the two populations successively, leading to the coexistence of coherent and incoherent populations forming chimera states. Second, a multiplex formation of the two populations in which only the mirror nodes are interconnected espouses explosive transitions in the two populations concurrently. The occurrence of both explosive synchronization and chimera are substantiated with rigorous theoretical mean-field analysis. The random pinning in the interlayer interactions concerns the practical problems where the impact of dynamics of one network on that of other interconnected networks remains elusive, as is the case for many real-world systems.
Collapse
Affiliation(s)
- Ajay Deep Kachhvah
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore-453552, India
| | - Sarika Jalan
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore-453552, India.,Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore-453552, India
| |
Collapse
|
13
|
Abstract
Relay synchronization in multi-layer networks implies inter-layer synchronization between two indirectly connected layers through a relay layer. In this work, we study the relay synchronization in a three-layer multiplex network by introducing degree-based weighting mechanisms. The mechanism of within-layer connectivity may be hubs-repelling or hubs-attracting whenever low-degree or high-degree nodes receive strong influence. We adjust the remote layers to hubs-attracting coupling, whereas the relay layer may be unweighted, hubs-repelling, or hubs-attracting network. We establish that relay synchronization is improved when the relay layer is hubs-repelling compared to the other cases. We determine analytically necessary stability conditions of relay synchronization state using the master stability function approach. Finally, we explore the relation between synchronization and the topological property of the relay layer. We find that a higher clustering coefficient hinders synchronizability, and vice versa. We also look into the intra-layer synchronization in the proposed weighted triplex network and establish that intra-layer synchronization occurs in a wider range when relay layer is hubs-attracting.
Collapse
|
14
|
Sawicki J, Koulen JM, Schöll E. Synchronization scenarios in three-layer networks with a hub. CHAOS (WOODBURY, N.Y.) 2021; 31:073131. [PMID: 34340334 DOI: 10.1063/5.0055835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
We study various relay synchronization scenarios in a three-layer network, where the middle (relay) layer is a single node, i.e., a hub. The two remote layers consist of non-locally coupled rings of FitzHugh-Nagumo oscillators modeling neuronal dynamics. All nodes of the remote layers are connected to the hub. The role of the hub and its importance for the existence of chimera states are investigated in dependence on the inter-layer coupling strength and inter-layer time delay. Tongue-like regions in the parameter plane exhibiting double chimeras, i.e., chimera states in the remote layers whose coherent cores are synchronized with each other, and salt-and-pepper states are found. At very low intra-layer coupling strength, when chimera states do not exist in single layers, these may be induced by the hub. Also, the influence of the dilution of links between the remote layers and the hub upon the dynamics is investigated. The greatest effect of dilution is observed when links to the coherent domain of the chimeras are removed.
Collapse
Affiliation(s)
- Jakub Sawicki
- Potsdam Institute for Climate Impact Research, Telegrafenberg A, 31, 14473 Potsdam, Germany
| | - Julia M Koulen
- Potsdam Institute for Climate Impact Research, Telegrafenberg A, 31, 14473 Potsdam, Germany
| | - Eckehard Schöll
- Potsdam Institute for Climate Impact Research, Telegrafenberg A, 31, 14473 Potsdam, Germany
| |
Collapse
|
15
|
Shepelev IA, Muni SS, Schöll E, Strelkova GI. Repulsive inter-layer coupling induces anti-phase synchronization. CHAOS (WOODBURY, N.Y.) 2021; 31:063116. [PMID: 34241296 DOI: 10.1063/5.0054770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
We present numerical results for the synchronization phenomena in a bilayer network of repulsively coupled 2D lattices of van der Pol oscillators. We consider the cases when the network layers have either different or the same types of intra-layer coupling topology. When the layers are uncoupled, the lattice of van der Pol oscillators with a repulsive interaction typically demonstrates a labyrinth-like pattern, while the lattice with attractively coupled van der Pol oscillators shows a regular spiral wave structure. We reveal for the first time that repulsive inter-layer coupling leads to anti-phase synchronization of spatiotemporal structures for all considered combinations of intra-layer coupling. As a synchronization measure, we use the correlation coefficient between the symmetrical pairs of network nodes, which is always close to -1 in the case of anti-phase synchronization. We also study how the form of synchronous structures depends on the intra-layer coupling strengths when the repulsive inter-layer coupling is varied.
Collapse
Affiliation(s)
- Igor A Shepelev
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Sishu S Muni
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Galina I Strelkova
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| |
Collapse
|
16
|
Andrzejak RG. Chimeras confined by fractal boundaries in the complex plane. CHAOS (WOODBURY, N.Y.) 2021; 31:053104. [PMID: 34240923 DOI: 10.1063/5.0049631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
Complex-valued quadratic maps either converge to fixed points, enter into periodic cycles, show aperiodic behavior, or diverge to infinity. Which of these scenarios takes place depends on the map's complex-valued parameter c and the initial conditions. The Mandelbrot set is defined by the set of c values for which the map remains bounded when initiated at the origin of the complex plane. In this study, we analyze the dynamics of a coupled network of two pairs of two quadratic maps in dependence on the parameter c. Across the four maps, c is kept the same whereby the maps are identical. In analogy to the behavior of individual maps, the network iterates either diverge to infinity or remain bounded. The bounded solutions settle into different stable states, including full synchronization and desynchronization of all maps. Furthermore, symmetric partially synchronized states of within-pair synchronization and across-pair synchronization as well as a symmetry broken chimera state are found. The boundaries between bounded and divergent solutions in the domain of c are fractals showing a rich variety of intriguingly esthetic patterns. Moreover, the set of bounded solutions is divided into countless subsets throughout all length scales in the complex plane. Each individual subset contains only one state of synchronization and is enclosed within fractal boundaries by c values leading to divergence.
Collapse
Affiliation(s)
- Ralph G Andrzejak
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Catalonia, Spain
| |
Collapse
|
17
|
Shepelev IA, Muni SS, Vadivasova TE. Synchronization of wave structures in a heterogeneous multiplex network of 2D lattices with attractive and repulsive intra-layer coupling. CHAOS (WOODBURY, N.Y.) 2021; 31:021104. [PMID: 33653058 DOI: 10.1063/5.0044327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
We explore numerically the synchronization effects in a heterogeneous two-layer network of two-dimensional (2D) lattices of van der Pol oscillators. The inter-layer coupling of the multiplex network has an attractive character. One layer of 2D lattices is characterized by attractive coupling of oscillators and demonstrates a spiral wave regime for both local and nonlocal interactions. The oscillators in the second layer are coupled through active elements and the interaction between them has repulsive character. We show that the lattice with the repulsive type of coupling demonstrates complex spatiotemporal cluster structures, which can be called labyrinth-like structures. We show for the first time that this multiplex network with fundamentally various types of intra-layer coupling demonstrates mutual synchronization and a competition between two types of structures. Our numerical study indicates that the synchronization threshold and the type of spatiotemporal patterns in both layers strongly depend on the ratio of the intra-layer coupling strength of the two lattices. We also analyze the impact of intra-layer coupling ranges on the synchronization effects.
Collapse
Affiliation(s)
- I A Shepelev
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - S S Muni
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - T E Vadivasova
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| |
Collapse
|