1
|
Richardson JO. Nonadiabatic Tunneling in Chemical Reactions. J Phys Chem Lett 2024; 15:7387-7397. [PMID: 38995660 DOI: 10.1021/acs.jpclett.4c01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Quantum tunneling can have a dramatic effect on chemical reaction rates. In nonadiabatic reactions such as electron transfers or spin crossovers, nuclear tunneling effects can be even stronger than for adiabatic proton transfers. Ring-polymer instanton theory enables molecular simulations of tunneling in full dimensionality and has been shown to be far more reliable than commonly used separable approximations. First-principles instanton calculations predict significant nonadiabatic tunneling of heavy atoms even at room temperature and give excellent agreement with experimental measurements for the intersystem crossing of two nitrenes in cryogenic matrix isolation, the spin-forbidden relaxation of photoexcited thiophosgene in the gas phase, and singlet oxygen deactivation in water at ambient conditions. Finally, an outlook of further theoretical developments is discussed.
Collapse
Affiliation(s)
- Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
2
|
Fay TP. Extending non-adiabatic rate theory to strong electronic couplings in the Marcus inverted regime. J Chem Phys 2024; 161:014101. [PMID: 38949594 DOI: 10.1063/5.0218653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Electron transfer reactions play an essential role in many chemical and biological processes. Fermi's golden rule (GR), which assumes that the coupling between electronic states is small, has formed the foundation of electron transfer rate theory; however, in short range electron/energy transfer reactions, this coupling can become very large, and, therefore, Fermi's GR fails to make even qualitatively accurate rate predictions. In this paper, I present a simple modified GR theory to describe electron transfer in the Marcus inverted regime at arbitrarily large electronic coupling strengths. This theory is based on an optimal global rotation of the diabatic states, which makes it compatible with existing methods for calculating GR rates that can account for nuclear quantum effects with anharmonic potentials. Furthermore, the optimal GR (OGR) theory can also be combined with analytic theories for non-adiabatic rates, such as Marcus theory and Marcus-Levich-Jortner theory, offering clear physical insights into strong electronic coupling effects in non-adiabatic processes. OGR theory is also tested on a large set of spin-boson models and an anharmonic model against exact quantum dynamics calculations, where it performs well, correctly predicting rate turnover at large coupling strengths. Finally, an example application to a boron-dipyrromethane-anthracene photosensitizer reveals that strong coupling effects inhibit excited state charge recombination in this system, reducing the rate of this process by a factor of 4. Overall, OGR theory offers a new approach to calculating electron transfer rates at strong couplings, offering new physical insights into a range of non-adiabatic processes.
Collapse
Affiliation(s)
- Thomas P Fay
- Institut de Chimie Radicalaire, Aix-Marseille Université, Campus de Saint-Jérôme, Av. Esc. Normandie Niemen, 13397 Marseille, France
| |
Collapse
|
3
|
Anderson MC, Schile AJ, Limmer DT. Nonadiabatic transition paths from quantum jump trajectories. J Chem Phys 2022; 157:164105. [DOI: 10.1063/5.0102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a means of studying rare reactive pathways in open quantum systems using transition path theory and ensembles of quantum jump trajectories. This approach allows for the elucidation of reactive paths for dissipative, nonadiabatic dynamics when the system is embedded in a Markovian environment. We detail the dominant pathways and rates of thermally activated processes and the relaxation pathways and photoyields following vertical excitation in a minimal model of a conical intersection. We find that the geometry of the conical intersection affects the electronic character of the transition state as defined through a generalization of a committor function for a thermal barrier crossing event. Similarly, the geometry changes the mechanism of relaxation following a vertical excitation. Relaxation in models resulting from small diabatic coupling proceeds through pathways dominated by pure dephasing, while those with large diabatic coupling proceed through pathways limited by dissipation. The perspective introduced here for the nonadiabatic dynamics of open quantum systems generalizes classical notions of reactive paths to fundamentally quantum mechanical processes.
Collapse
Affiliation(s)
- Michelle C. Anderson
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Addison J. Schile
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - David T. Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Kavli Energy NanoSciences Institute, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
4
|
Dupuy L, Talotta F, Agostini F, Lauvergnat D, Poirier B, Scribano Y. Adiabatic and Nonadiabatic Dynamics with Interacting Quantum Trajectories. J Chem Theory Comput 2022; 18:6447-6462. [DOI: 10.1021/acs.jctc.2c00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lucien Dupuy
- Laboratoire Univers et Particules de Montpellier, UMR-CNRS 5299, Université de Montpellier, Place Eugène Bataillon, 34095Montpellier, France
| | - Francesco Talotta
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR-CNRS 8000, 91405Orsay, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR-CNRS 8000, 91405Orsay, France
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR-CNRS 8000, 91405Orsay, France
| | - Bill Poirier
- Department of Chemistry and Biochemistry, and Department of Physics, Texas Tech University, Box 41061, 79409-1061Lubbock, Texas, United States
| | - Yohann Scribano
- Laboratoire Univers et Particules de Montpellier, UMR-CNRS 5299, Université de Montpellier, Place Eugène Bataillon, 34095Montpellier, France
| |
Collapse
|
5
|
Litman Y, Pós ES, Box CL, Martinazzo R, Maurer RJ, Rossi M. Dissipative tunneling rates through the incorporation of first-principles electronic friction in instanton rate theory. I. Theory. J Chem Phys 2022; 156:194106. [PMID: 35597633 DOI: 10.1063/5.0088399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reactions involving adsorbates on metallic surfaces and impurities in bulk metals are ubiquitous in a wide range of technological applications. The theoretical modeling of such reactions presents a formidable challenge for theory because nuclear quantum effects (NQEs) can play a prominent role and the coupling of the atomic motion with the electrons in the metal gives rise to important non-adiabatic effects (NAEs) that alter atomic dynamics. In this work, we derive a theoretical framework that captures both NQEs and NAEs and, due to its high efficiency, can be applied to first-principles calculations of reaction rates in high-dimensional realistic systems. More specifically, we develop a method that we coin ring polymer instanton with explicit friction (RPI-EF), starting from the ring polymer instanton formalism applied to a system-bath model. We derive general equations that incorporate the spatial and frequency dependence of the friction tensor and then combine this method with the ab initio electronic friction formalism for the calculation of thermal reaction rates. We show that the connection between RPI-EF and the form of the electronic friction tensor presented in this work does not require any further approximations, and it is expected to be valid as long as the approximations of both underlying theories remain valid.
Collapse
Affiliation(s)
- Y Litman
- MPI for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - E S Pós
- MPI for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - C L Box
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - R Martinazzo
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - R J Maurer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - M Rossi
- MPI for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
6
|
Trenins G, Richardson JO. Nonadiabatic instanton rate theory beyond the golden-rule limit. J Chem Phys 2022; 156:174115. [DOI: 10.1063/5.0088518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fermi's golden rule describes the leading-order behaviour of the reaction rate as a function of the diabatic coupling. Its asymptotic (ℏ →0) limit is the semiclassical golden-rule instanton rate theory, which rigorously approximates nuclear quantum effects, lends itself to efficient numerical computation and gives physical insight into reaction mechanisms. However the golden rule by itself becomes insufficient as the strength of the diabatic coupling increases, so higher-order terms must be additionally considered. In this work we give a first-principles derivation of the next-order term beyond the golden rule, represented as a sum of three components. Two of them lead to new instanton pathways that extend the golden-rule case and, among other factors, account for the effects of recrossing on the full rate. The remaining component derives from the equilibrium partition function and accounts for changes in potential energy around the reactant and product wells due to diabatic coupling. The new semiclassical theory demands little computational effort beyond a golden-rule instanton calculation. It makes it possible to rigorously assess the accuracy of the golden-rule approximation and sets the stage for future work on general semiclassical nonadiabatic rate theories.
Collapse
Affiliation(s)
- George Trenins
- ETH Zurich Department of Chemistry and Applied Biosciences, Switzerland
| | | |
Collapse
|
7
|
Dresselhaus T, Bungey CBA, Knowles PJ, Manby FR. Coupling electrons and vibrations in molecular quantum chemistry. J Chem Phys 2020; 153:214114. [PMID: 33291918 DOI: 10.1063/5.0032900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We derive an electron-vibration model Hamiltonian in a quantum chemical framework and explore the extent to which such a Hamiltonian can capture key effects of nonadiabatic dynamics. The model Hamiltonian is a simple two-body operator, and we make preliminary steps at applying standard quantum chemical methods to evaluate its properties, including mean-field theory, linear response, and a primitive correlated model. The Hamiltonian can be compared to standard vibronic Hamiltonians, but it is constructed without reference to potential energy surfaces through direct differentiation of the one- and two-electron integrals at a single reference geometry. The nature of the model Hamiltonian in the harmonic and linear-coupling regime is investigated for pyrazine, where a simple time-dependent calculation including electron-vibration correlation is demonstrated to exhibit the well-studied population transfer between the S2 and S1 excited states.
Collapse
Affiliation(s)
- Thomas Dresselhaus
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Callum B A Bungey
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Peter J Knowles
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Frederick R Manby
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
8
|
Lawrence JE, Manolopoulos DE. An improved path-integral method for golden-rule rates. J Chem Phys 2020; 153:154113. [PMID: 33092388 DOI: 10.1063/5.0022535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a simple method for the calculation of reaction rates in the Fermi golden-rule limit, which accurately captures the effects of tunneling and zero-point energy. The method is based on a modification of the recently proposed golden-rule quantum transition state theory (GR-QTST) of Thapa, Fang, and Richardson [J. Chem. Phys. 150, 104107 (2019)]. While GR-QTST is not size consistent, leading to the possibility of unbounded errors in the rate, our modified method has no such issue and so can be reliably applied to condensed phase systems. Both methods involve path-integral sampling in a constrained ensemble; the two methods differ, however, in the choice of constraint functional. We demonstrate numerically that our modified method is as accurate as GR-QTST for the one-dimensional model considered by Thapa and co-workers. We then study a multidimensional spin-boson model, for which our method accurately predicts the true quantum rate, while GR-QTST breaks down with an increasing number of boson modes in the discretization of the spectral density. Our method is able to accurately predict reaction rates in the Marcus inverted regime without the need for the analytic continuation required by Wolynes theory.
Collapse
Affiliation(s)
- Joseph E Lawrence
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David E Manolopoulos
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|