1
|
Nicks R, Allen R, Coombes S. Insights into oscillator network dynamics using a phase-isostable framework. CHAOS (WOODBURY, N.Y.) 2024; 34:013141. [PMID: 38271631 DOI: 10.1063/5.0179430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024]
Abstract
Networks of coupled nonlinear oscillators can display a wide range of emergent behaviors under the variation of the strength of the coupling. Network equations for pairs of coupled oscillators where the dynamics of each node is described by the evolution of its phase and slowest decaying isostable coordinate have previously been shown to capture bifurcations and dynamics of the network, which cannot be explained through standard phase reduction. An alternative framework using isostable coordinates to obtain higher-order phase reductions has also demonstrated a similar descriptive ability for two oscillators. In this work, we consider the phase-isostable network equations for an arbitrary but finite number of identical coupled oscillators, obtaining conditions required for the stability of phase-locked states including synchrony. For the mean-field complex Ginzburg-Landau equation where the solutions of the full system are known, we compare the accuracy of the phase-isostable network equations and higher-order phase reductions in capturing bifurcations of phase-locked states. We find the former to be the more accurate and, therefore, employ this to investigate the dynamics of globally linearly coupled networks of Morris-Lecar neuron models (both two and many nodes). We observe qualitative correspondence between results from numerical simulations of the full system and the phase-isostable description demonstrating that in both small and large networks, the phase-isostable framework is able to capture dynamics that the first-order phase description cannot.
Collapse
Affiliation(s)
- R Nicks
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - R Allen
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - S Coombes
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
2
|
Mau ETK, Rosenblum M, Pikovsky A. High-order phase reduction for coupled 2D oscillators. CHAOS (WOODBURY, N.Y.) 2023; 33:101101. [PMID: 37831797 DOI: 10.1063/5.0169008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Phase reduction is a general approach to describe coupled oscillatory units in terms of their phases, assuming that the amplitudes are enslaved. The coupling should be small for such reduction, but one also expects the reduction to be valid for finite coupling. This paper presents a general framework, allowing us to obtain coupling terms in higher orders of the coupling parameter for generic two-dimensional oscillators and arbitrary coupling terms. The theory is illustrated with an accurate prediction of Arnold's tongue for the van der Pol oscillator exploiting higher-order phase reduction.
Collapse
Affiliation(s)
- Erik T K Mau
- Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam-Golm, Germany
| | - Michael Rosenblum
- Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam-Golm, Germany
| | - Arkady Pikovsky
- Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
3
|
Reyner-Parra D, Bonet C, Seara TM, Huguet G. Traveling waves in a model for cortical spreading depolarization with slow-fast dynamics. CHAOS (WOODBURY, N.Y.) 2023; 33:083154. [PMID: 38060797 DOI: 10.1063/5.0160509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/30/2023] [Indexed: 12/18/2023]
Abstract
Cortical spreading depression and spreading depolarization (CSD) are waves of neuronal depolarization that spread across the cortex, leading to a temporary saturation of brain activity. They are associated with various brain disorders such as migraine and ischemia. We consider a reduced version of a biophysical model of a neuron-astrocyte network for the initiation and propagation of CSD waves [Huguet et al., Biophys. J. 111(2), 452-462, 2016], consisting of reaction-diffusion equations. The reduced model considers only the dynamics of the neuronal and astrocytic membrane potentials and the extracellular potassium concentration, capturing the instigation process implicated in such waves. We present a computational and mathematical framework based on the parameterization method and singular perturbation theory to provide semi-analytical results on the existence of a wave solution and to compute it jointly with its velocity of propagation. The traveling wave solution can be seen as a heteroclinic connection of an associated system of ordinary differential equations with a slow-fast dynamics. The presence of distinct time scales within the system introduces numerical instabilities, which we successfully address through the identification of significant invariant manifolds and the implementation of the parameterization method. Our results provide a methodology that allows to identify efficiently and accurately the mechanisms responsible for the initiation of these waves and the wave propagation velocity.
Collapse
Affiliation(s)
- David Reyner-Parra
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
| | - Carles Bonet
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
| | - Teresa M Seara
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
- Institut de Matemàtiques de la UPC - Barcelona Tech (IMTech), Pau Gargallo 14, 08028 Barcelona, Spain
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193 Bellaterra, Spain
| | - Gemma Huguet
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
- Institut de Matemàtiques de la UPC - Barcelona Tech (IMTech), Pau Gargallo 14, 08028 Barcelona, Spain
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193 Bellaterra, Spain
| |
Collapse
|
4
|
Pérez-Cervera A, Gutkin B, Thomas PJ, Lindner B. A universal description of stochastic oscillators. Proc Natl Acad Sci U S A 2023; 120:e2303222120. [PMID: 37432992 PMCID: PMC10629544 DOI: 10.1073/pnas.2303222120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/18/2023] [Indexed: 07/13/2023] Open
Abstract
Many systems in physics, chemistry, and biology exhibit oscillations with a pronounced random component. Such stochastic oscillations can emerge via different mechanisms, for example, linear dynamics of a stable focus with fluctuations, limit-cycle systems perturbed by noise, or excitable systems in which random inputs lead to a train of pulses. Despite their diverse origins, the phenomenology of random oscillations can be strikingly similar. Here, we introduce a nonlinear transformation of stochastic oscillators to a complex-valued function [Formula: see text](x) that greatly simplifies and unifies the mathematical description of the oscillator's spontaneous activity, its response to an external time-dependent perturbation, and the correlation statistics of different oscillators that are weakly coupled. The function [Formula: see text] (x) is the eigenfunction of the Kolmogorov backward operator with the least negative (but nonvanishing) eigenvalue λ1 = μ1 + iω1. The resulting power spectrum of the complex-valued function is exactly given by a Lorentz spectrum with peak frequency ω1 and half-width μ1; its susceptibility with respect to a weak external forcing is given by a simple one-pole filter, centered around ω1; and the cross-spectrum between two coupled oscillators can be easily expressed by a combination of the spontaneous power spectra of the uncoupled systems and their susceptibilities. Our approach makes qualitatively different stochastic oscillators comparable, provides simple characteristics for the coherence of the random oscillation, and gives a framework for the description of weakly coupled oscillators.
Collapse
Affiliation(s)
- Alberto Pérez-Cervera
- Department of Applied Mathematics, Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Boris Gutkin
- Group for Neural Theory, LNC2 INSERM U960, Département d’Etudes Cognitives, Ecole Normale Supérieure - Paris Science Letters University, Paris75005, France
| | - Peter J. Thomas
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, OH44106
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Berlin10115, Germany
- Department of Physics, Humboldt Universität zu Berlin, BerlinD-12489, Germany
| |
Collapse
|
5
|
Reyner-Parra D, Huguet G. Phase-locking patterns underlying effective communication in exact firing rate models of neural networks. PLoS Comput Biol 2022; 18:e1009342. [PMID: 35584147 PMCID: PMC9154197 DOI: 10.1371/journal.pcbi.1009342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 05/31/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Macroscopic oscillations in the brain have been observed to be involved in many cognitive tasks but their role is not completely understood. One of the suggested functions of the oscillations is to dynamically modulate communication between neural circuits. The Communication Through Coherence (CTC) theory proposes that oscillations reflect rhythmic changes in excitability of the neuronal populations. Thus, populations need to be properly phase-locked so that input volleys arrive at the peaks of excitability of the receiving population to communicate effectively. Here, we present a modeling study to explore synchronization between neuronal circuits connected with unidirectional projections. We consider an Excitatory-Inhibitory (E-I) network of quadratic integrate-and-fire neurons modeling a Pyramidal-Interneuronal Network Gamma (PING) rhythm. The network receives an external periodic input from either one or two sources, simulating the inputs from other oscillating neural groups. We use recently developed mean-field models which provide an exact description of the macroscopic activity of the spiking network. This low-dimensional mean field model allows us to use tools from bifurcation theory to identify the phase-locked states between the input and the target population as a function of the amplitude, frequency and coherence of the inputs. We identify the conditions for optimal phase-locking and effective communication. We find that inputs with high coherence can entrain the network for a wider range of frequencies. Besides, faster oscillatory inputs than the intrinsic network gamma cycle show more effective communication than inputs with similar frequency. Our analysis further shows that the entrainment of the network by inputs with higher frequency is more robust to distractors, thus giving them an advantage to entrain the network and communicate effectively. Finally, we show that pulsatile inputs can switch between attended inputs in selective attention. Oscillations are ubiquitous in the brain and are involved in several cognitive tasks but their role is not completely understood. The Communication Through Coherence theory proposes that background oscillations in the brain regulate the information flow between neural populations. The oscillators that are properly phase-locked so that inputs arrive at the peaks of excitability of the receiving population communicate effectively. In this paper, we study the emerging phase-locking patterns of a network generating PING oscillations under external periodic forcing, simulating the oscillatory input from other neural groups. We identify the conditions for optimal phase-locking and effective communication. Namely, we find that inputs with higher frequency and coherence have an adavantage to entrain the network and we quantify how robust are to distractors. Furthermore, we show how selective attention can be implemented by means of phase locking and we show that pulsatile inputs can switch between attended inputs.
Collapse
Affiliation(s)
- David Reyner-Parra
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Gemma Huguet
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, Spain
- Institut de Matemàtiques de la UPC - Barcelona Tech (IMTech), Barcelona, Spain
- Centre de Recerca Matemàtica, Barcelona, Spain
- * E-mail:
| |
Collapse
|
6
|
Pérez-Cervera A, Lindner B, Thomas PJ. Quantitative comparison of the mean-return-time phase and the stochastic asymptotic phase for noisy oscillators. BIOLOGICAL CYBERNETICS 2022; 116:219-234. [PMID: 35320405 PMCID: PMC9068686 DOI: 10.1007/s00422-022-00929-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/16/2022] [Indexed: 05/10/2023]
Abstract
Seminal work by A. Winfree and J. Guckenheimer showed that a deterministic phase variable can be defined either in terms of Poincaré sections or in terms of the asymptotic (long-time) behaviour of trajectories approaching a stable limit cycle. However, this equivalence between the deterministic notions of phase is broken in the presence of noise. Different notions of phase reduction for a stochastic oscillator can be defined either in terms of mean-return-time sections or as the argument of the slowest decaying complex eigenfunction of the Kolmogorov backwards operator. Although both notions of phase enjoy a solid theoretical foundation, their relationship remains unexplored. Here, we quantitatively compare both notions of stochastic phase. We derive an expression relating both notions of phase and use it to discuss differences (and similarities) between both definitions of stochastic phase for (i) a spiral sink motivated by stochastic models for electroencephalograms, (ii) noisy limit-cycle systems-neuroscience models, and (iii) a stochastic heteroclinic oscillator inspired by a simple motor-control system.
Collapse
Affiliation(s)
- Alberto Pérez-Cervera
- National Research University Higher School of Economics, Moscow, Russia
- Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Institute of Physics, Humboldt University, Berlin, Germany
| | - Peter J. Thomas
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
7
|
Pérez-Cervera A, Lindner B, Thomas PJ. Isostables for Stochastic Oscillators. PHYSICAL REVIEW LETTERS 2021; 127:254101. [PMID: 35029447 DOI: 10.1103/physrevlett.127.254101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/18/2021] [Accepted: 11/04/2021] [Indexed: 05/25/2023]
Abstract
Thomas and Lindner [P. J. Thomas and B. Lindner, Phys. Rev. Lett. 113, 254101 (2014).PRLTAO0031-900710.1103/PhysRevLett.113.254101], defined an asymptotic phase for stochastic oscillators as the angle in the complex plane made by the eigenfunction, having a complex eigenvalue with a least negative real part, of the backward Kolmogorov (or stochastic Koopman) operator. We complete the phase-amplitude description of noisy oscillators by defining the stochastic isostable coordinate as the eigenfunction with the least negative nontrivial real eigenvalue. Our results suggest a framework for stochastic limit cycle dynamics that encompasses noise-induced oscillations.
Collapse
Affiliation(s)
- Alberto Pérez-Cervera
- National Research University Higher School of Economics, 109208 Moscow, Russia and Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, Haus 2, 10115 Berlin, Germany and Institute of Physics, Humboldt University at Berlin, Newtonstraße 15, D-12489 Berlin, Germany
| | - Peter J Thomas
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
8
|
Pérez-Cervera A, Hlinka J. Perturbations both trigger and delay seizures due to generic properties of slow-fast relaxation oscillators. PLoS Comput Biol 2021; 17:e1008521. [PMID: 33780437 PMCID: PMC8032201 DOI: 10.1371/journal.pcbi.1008521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/08/2021] [Accepted: 02/22/2021] [Indexed: 01/24/2023] Open
Abstract
The mechanisms underlying the emergence of seizures are one of the most important unresolved issues in epilepsy research. In this paper, we study how perturbations, exogenous or endogenous, may promote or delay seizure emergence. To this aim, due to the increasingly adopted view of epileptic dynamics in terms of slow-fast systems, we perform a theoretical analysis of the phase response of a generic relaxation oscillator. As relaxation oscillators are effectively bistable systems at the fast time scale, it is intuitive that perturbations of the non-seizing state with a suitable direction and amplitude may cause an immediate transition to seizure. By contrast, and perhaps less intuitively, smaller amplitude perturbations have been found to delay the spontaneous seizure initiation. By studying the isochrons of relaxation oscillators, we show that this is a generic phenomenon, with the size of such delay depending on the slow flow component. Therefore, depending on perturbation amplitudes, frequency and timing, a train of perturbations causes an occurrence increase, decrease or complete suppression of seizures. This dependence lends itself to analysis and mechanistic understanding through methods outlined in this paper. We illustrate this methodology by computing the isochrons, phase response curves and the response to perturbations in several epileptic models possessing different slow vector fields. While our theoretical results are applicable to any planar relaxation oscillator, in the motivating context of epilepsy they elucidate mechanisms of triggering and abating seizures, thus suggesting stimulation strategies with effects ranging from mere delaying to full suppression of seizures. Despite its simplicity, the modelling of epileptic dynamics as a slow-fast transition between low and high activity states mediated by some slow feedback variable is a relatively novel albeit fruitful approach. This study is the first, to our knowledge, characterizing the response of such slow-fast models of epileptic brain to perturbations by computing its isochrons. Besides its numerical computation, we theoretically determine which factors shape the geometry of isochrons for planar slow-fast oscillators. As a consequence, we introduce a theoretical approach providing a clear understanding of the response of perturbations of slow-fast oscillators. Within the epilepsy context, this elucidates the origin of the contradictory role of interictal epileptiform discharges in the transition to seizure, manifested by both pro-convulsive and anti-convulsive effect depending on the amplitude, frequency and timing. More generally, this paper provides theoretical framework highlighting the role of the slow flow component on the response to perturbations in relaxation oscillators, pointing to the general phenomena in such slow-fast oscillators ubiquitous in biological systems.
Collapse
Affiliation(s)
- Alberto Pérez-Cervera
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
- * E-mail: (AP); (JH)
| | - Jaroslav Hlinka
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
- * E-mail: (AP); (JH)
| |
Collapse
|
9
|
Wang Y, Gill JP, Chiel HJ, Thomas PJ. Shape versus timing: linear responses of a limit cycle with hard boundaries under instantaneous and static perturbation. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS 2021; 20:701-744. [PMID: 37207037 PMCID: PMC10194846 DOI: 10.1137/20m1344974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
When dynamical systems that produce rhythmic behaviors operate within hard limits, they may exhibit limit cycles with sliding components, that is, closed isolated periodic orbits that make and break contact with a constraint surface. Examples include heel-ground interaction in locomotion, firing rate rectification in neural networks, and stick-slip oscillators. In many rhythmic systems, robustness against external perturbations involves response of both the shape and the timing of the limit cycle trajectory. The existing methods of infinitesimal phase response curve (iPRC) and variational analysis are well established for quantifying changes in timing and shape, respectively, for smooth systems. These tools have recently been extended to nonsmooth dynamics with transversal crossing boundaries. In this work, we further extend the iPRC method to nonsmooth systems with sliding components, which enables us to make predictions about the synchronization properties of weakly coupled stick-slip oscillators. We observe a new feature of the isochrons in a planar limit cycle with hard sliding boundaries: a nonsmooth kink in the asymptotic phase function, originating from the point at which the limit cycle smoothly departs the constraint surface, and propagating away from the hard boundary into the interior of the domain. Moreover, the classical variational analysis neglects timing information and is restricted to instantaneous perturbations. By defining the "infinitesimal shape response curve" (iSRC), we incorporate timing sensitivity of an oscillator to describe the shape response of this oscillator to parametric perturbations. In order to extract timing information, we also develop a "local timing response curve" (lTRC) that measures the timing sensitivity of a limit cycle within any given region. We demonstrate in a specific example that taking into account local timing sensitivity in a nonsmooth system greatly improves the accuracy of the iSRC over global timing analysis given by the iPRC.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Mathematics, The University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey P Gill
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hillel J Chiel
- Departments of Biology, Neurosciences and Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Peter J Thomas
- Departments of Biology, Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|