1
|
Schwerdtfeger P, Wales DJ. 100 Years of the Lennard-Jones Potential. J Chem Theory Comput 2024; 20:3379-3405. [PMID: 38669689 DOI: 10.1021/acs.jctc.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
It is now 100 years since Lennard-Jones published his first paper introducing the now famous potential that bears his name. It is therefore timely to reflect on the many achievements, as well as the limitations, of this potential in the theory of atomic and molecular interactions, where applications range from descriptions of intermolecular forces to molecules, clusters, and condensed matter.
Collapse
Affiliation(s)
- Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, Auckland 0745, New Zealand
| | - David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
2
|
Woods EJ, Wales DJ. Analysis and interpretation of first passage time distributions featuring rare events. Phys Chem Chem Phys 2024; 26:1640-1657. [PMID: 38059562 DOI: 10.1039/d3cp04199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
In this contribution we consider theory and associated computational tools to treat the kinetics associated with competing pathways on multifunnel energy landscapes. Multifunnel landscapes are associated with molecular switches and multifunctional materials, and are expected to exhibit multiple relaxation time scales and associated thermodynamic signatures in the heat capacity. Our focus here is on the first passage time distribution, which is encoded in a kinetic transition network containing all the locally stable states and the pathways between them. This network can be renormalised to reduce the dimensionality, while exactly conserving the mean first passage time and approximately conserving the full distribution. The structure of the reduced network can be visualised using disconnectivity graphs. We show how features in the first passage time distribution can be associated with specific kinetic traps, and how the appearance of competing relaxation time scales depends on the starting conditions. The theory is tested for two model landscapes and applied to an atomic cluster and a disordered peptide. Our most important contribution is probably the reconstruction of the full distribution for long time scales, where numerical problems prevent direct calculations. Here we combine accurate treatment of the mean first passage time with the reliable part of the distribution corresponding to faster time scales. Hence we now have a fundamental understanding of both thermodynamic and kinetic signatures of multifunnel landscapes.
Collapse
Affiliation(s)
- Esmae J Woods
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
3
|
Bebon R, Godec A. Controlling Uncertainty of Empirical First-Passage Times in the Small-Sample Regime. PHYSICAL REVIEW LETTERS 2023; 131:237101. [PMID: 38134782 DOI: 10.1103/physrevlett.131.237101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 12/24/2023]
Abstract
We derive general bounds on the probability that the empirical first-passage time τ[over ¯]_{n}≡∑_{i=1}^{n}τ_{i}/n of a reversible ergodic Markov process inferred from a sample of n independent realizations deviates from the true mean first-passage time by more than any given amount in either direction. We construct nonasymptotic confidence intervals that hold in the elusive small-sample regime and thus fill the gap between asymptotic methods and the Bayesian approach that is known to be sensitive to prior belief and tends to underestimate uncertainty in the small-sample setting. We prove sharp bounds on extreme first-passage times that control uncertainty even in cases where the mean alone does not sufficiently characterize the statistics. Our concentration-of-measure-based results allow for model-free error control and reliable error estimation in kinetic inference, and are thus important for the analysis of experimental and simulation data in the presence of limited sampling.
Collapse
Affiliation(s)
- Rick Bebon
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Qiu Y, O’Connor MS, Xue M, Liu B, Huang X. An Efficient Path Classification Algorithm Based on Variational Autoencoder to Identify Metastable Path Channels for Complex Conformational Changes. J Chem Theory Comput 2023; 19:4728-4742. [PMID: 37382437 PMCID: PMC11042546 DOI: 10.1021/acs.jctc.3c00318] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Conformational changes (i.e., dynamic transitions between pairs of conformational states) play important roles in many chemical and biological processes. Constructing the Markov state model (MSM) from extensive molecular dynamics (MD) simulations is an effective approach to dissect the mechanism of conformational changes. When combined with transition path theory (TPT), MSM can be applied to elucidate the ensemble of kinetic pathways connecting pairs of conformational states. However, the application of TPT to analyze complex conformational changes often results in a vast number of kinetic pathways with comparable fluxes. This obstacle is particularly pronounced in heterogeneous self-assembly and aggregation processes. The large number of kinetic pathways makes it challenging to comprehend the molecular mechanisms underlying conformational changes of interest. To address this challenge, we have developed a path classification algorithm named latent-space path clustering (LPC) that efficiently lumps parallel kinetic pathways into distinct metastable path channels, making them easier to comprehend. In our algorithm, MD conformations are first projected onto a low-dimensional space containing a small set of collective variables (CVs) by time-structure-based independent component analysis (tICA) with kinetic mapping. Then, MSM and TPT are constructed to obtain the ensemble of pathways, and a deep learning architecture named the variational autoencoder (VAE) is used to learn the spatial distributions of kinetic pathways in the continuous CV space. Based on the trained VAE model, the TPT-generated ensemble of kinetic pathways can be embedded into a latent space, where the classification becomes clear. We show that LPC can efficiently and accurately identify the metastable path channels in three systems: a 2D potential, the aggregation of two hydrophobic particles in water, and the folding of the Fip35 WW domain. Using the 2D potential, we further demonstrate that our LPC algorithm outperforms the previous path-lumping algorithms by making substantially fewer incorrect assignments of individual pathways to four path channels. We expect that LPC can be widely applied to identify the dominant kinetic pathways underlying complex conformational changes.
Collapse
Affiliation(s)
- Yunrui Qiu
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Michael S. O’Connor
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mingyi Xue
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Bojun Liu
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xuhui Huang
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
5
|
Woods EJ, Kannan D, Sharpe DJ, Swinburne TD, Wales DJ. Analysing ill-conditioned Markov chains. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220245. [PMID: 37211032 PMCID: PMC10200351 DOI: 10.1098/rsta.2022.0245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/15/2022] [Indexed: 05/23/2023]
Abstract
Discrete state Markov chains in discrete or continuous time are widely used to model phenomena in the social, physical and life sciences. In many cases, the model can feature a large state space, with extreme differences between the fastest and slowest transition timescales. Analysis of such ill-conditioned models is often intractable with finite precision linear algebra techniques. In this contribution, we propose a solution to this problem, namely partial graph transformation, to iteratively eliminate and renormalize states, producing a low-rank Markov chain from an ill-conditioned initial model. We show that the error induced by this procedure can be minimized by retaining both the renormalized nodes that represent metastable superbasins, and those through which reactive pathways concentrate, i.e. the dividing surface in the discrete state space. This procedure typically returns a much lower rank model, where trajectories can be efficiently generated with kinetic path sampling. We apply this approach to an ill-conditioned Markov chain for a model multi-community system, measuring the accuracy by direct comparison with trajectories and transition statistics. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
Affiliation(s)
- Esmae J. Woods
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Deepti Kannan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Daniel J. Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Thomas D. Swinburne
- CNRS, CINaM UMR, Aix-Marseille Université, 7325, Campus de Luminy, 13288 Marseille, France
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
6
|
Abstract
Multifunctional systems, such as molecular switches, exhibit multifunnel energy landscapes associated with the alternative functional states. In this contribution the multifunnel organization is decoded from dynamical signatures in the first passage time distribution between reactants and products. Characteristic relaxation rates are revealed by analyzing the kinetics as a function of the observation time scale, which scans the underlying distribution. Extracting the corresponding dynamical signatures provides direct insight into the organization of the molecular energy landscape, which will facilitate a rational design of target functionality. Examples are illustrated for multifunnel landscapes in biomolecular systems and an atomic cluster.
Collapse
|
7
|
Röder K, Wales DJ. The Energy Landscape Perspective: Encoding Structure and Function for Biomolecules. Front Mol Biosci 2022; 9:820792. [PMID: 35155579 PMCID: PMC8829389 DOI: 10.3389/fmolb.2022.820792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/07/2022] [Indexed: 12/02/2022] Open
Abstract
The energy landscape perspective is outlined with particular reference to biomolecules that perform multiple functions. We associate these multifunctional molecules with multifunnel energy landscapes, illustrated by some selected examples, where understanding the organisation of the landscape has provided new insight into function. Conformational selection and induced fit may provide alternative routes to realisation of multifunctionality, exploiting the possibility of environmental control and distinct binding modes.
Collapse
Affiliation(s)
| | - David J. Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Sharpe DJ, Wales DJ. Nearly reducible finite Markov chains: Theory and algorithms. J Chem Phys 2021; 155:140901. [PMID: 34654307 DOI: 10.1063/5.0060978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Finite Markov chains, memoryless random walks on complex networks, appear commonly as models for stochastic dynamics in condensed matter physics, biophysics, ecology, epidemiology, economics, and elsewhere. Here, we review exact numerical methods for the analysis of arbitrary discrete- and continuous-time Markovian networks. We focus on numerically stable methods that are required to treat nearly reducible Markov chains, which exhibit a separation of characteristic timescales and are therefore ill-conditioned. In this metastable regime, dense linear algebra methods are afflicted by propagation of error in the finite precision arithmetic, and the kinetic Monte Carlo algorithm to simulate paths is unfeasibly inefficient. Furthermore, iterative eigendecomposition methods fail to converge without the use of nontrivial and system-specific preconditioning techniques. An alternative approach is provided by state reduction procedures, which do not require additional a priori knowledge of the Markov chain. Macroscopic dynamical quantities, such as moments of the first passage time distribution for a transition to an absorbing state, and microscopic properties, such as the stationary, committor, and visitation probabilities for nodes, can be computed robustly using state reduction algorithms. The related kinetic path sampling algorithm allows for efficient sampling of trajectories on a nearly reducible Markov chain. Thus, all of the information required to determine the kinetically relevant transition mechanisms, and to identify the states that have a dominant effect on the global dynamics, can be computed reliably even for computationally challenging models. Rare events are a ubiquitous feature of realistic dynamical systems, and so the methods described herein are valuable in many practical applications.
Collapse
Affiliation(s)
- Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
9
|
Sharpe DJ, Wales DJ. Numerical analysis of first-passage processes in finite Markov chains exhibiting metastability. Phys Rev E 2021; 104:015301. [PMID: 34412280 DOI: 10.1103/physreve.104.015301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/29/2021] [Indexed: 12/19/2022]
Abstract
We describe state-reduction algorithms for the analysis of first-passage processes in discrete- and continuous-time finite Markov chains. We present a formulation of the graph transformation algorithm that allows for the evaluation of exact mean first-passage times, stationary probabilities, and committor probabilities for all nonabsorbing nodes of a Markov chain in a single computation. Calculation of the committor probabilities within the state-reduction formalism is readily generalizable to the first hitting problem for any number of alternative target states. We then show that a state-reduction algorithm can be formulated to compute the expected number of times that each node is visited along a first-passage path. Hence, all properties required to analyze the first-passage path ensemble (FPPE) at both a microscopic and macroscopic level of detail, including the mean and variance of the first-passage time distribution, can be computed using state-reduction methods. In particular, we derive expressions for the probability that a node is visited along a direct transition path, which proceeds without returning to the initial state, considering both the nonequilibrium and equilibrium (steady-state) FPPEs. The reactive visitation probability provides a rigorous metric to quantify the dynamical importance of a node for the productive transition between two endpoint states and thus allows the local states that facilitate the dominant transition mechanisms to be readily identified. The state-reduction procedures remain numerically stable even for Markov chains exhibiting metastability, which can be severely ill-conditioned. The rare event regime is frequently encountered in realistic models of dynamical processes, and our methodology therefore provides valuable tools for the analysis of Markov chains in practical applications. We illustrate our approach with numerical results for a kinetic network representing a structural transition in an atomic cluster.
Collapse
Affiliation(s)
- Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, and Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, and Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
10
|
Sharpe DJ, Wales DJ. Graph transformation and shortest paths algorithms for finite Markov chains. Phys Rev E 2021; 103:063306. [PMID: 34271741 DOI: 10.1103/physreve.103.063306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
The graph transformation (GT) algorithm robustly computes the mean first-passage time to an absorbing state in a finite Markov chain. Here we present a concise overview of the iterative and block formulations of the GT procedure and generalize the GT formalism to the case of any path property that is a sum of contributions from individual transitions. In particular, we examine the path action, which directly relates to the path probability, and analyze the first-passage path ensemble for a model Markov chain that is metastable and therefore numerically challenging. We compare the mean first-passage path action, obtained using GT, with the full path action probability distribution simulated efficiently using kinetic path sampling, and with values for the highest-probability paths determined by the recursive enumeration algorithm (REA). In Markov chains representing realistic dynamical processes, the probability distributions of first-passage path properties are typically fat-tailed and therefore difficult to converge by sampling, which motivates the use of exact and numerically stable approaches to compute the expectation. We find that the kinetic relevance of the set of highest-probability paths depends strongly on the metastability of the Markov chain, and so the properties of the dominant first-passage paths may be unrepresentative of the global dynamics. Use of a global measure for edge costs in the REA, based on net productive fluxes, allows the total reactive flux to be decomposed into a finite set of contributions from simple flux paths. By considering transition flux paths, a detailed quantitative analysis of the relative importance of competing dynamical processes is possible even in the metastable regime.
Collapse
Affiliation(s)
- Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
11
|
Kannan D, Sharpe DJ, Swinburne TD, Wales DJ. Optimal dimensionality reduction of Markov chains using graph transformation. J Chem Phys 2020; 153:244108. [PMID: 33380101 DOI: 10.1063/5.0025174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Markov chains can accurately model the state-to-state dynamics of a wide range of complex systems, but the underlying transition matrix is ill-conditioned when the dynamics feature a separation of timescales. Graph transformation (GT) provides a numerically stable method to compute exact mean first passage times (MFPTs) between states, which are the usual dynamical observables in continuous-time Markov chains (CTMCs). Here, we generalize the GT algorithm to discrete-time Markov chains (DTMCs), which are commonly estimated from simulation data, for example, in the Markov state model approach. We then consider the dimensionality reduction of CTMCs and DTMCs, which aids model interpretation and facilitates more expensive computations, including sampling of pathways. We perform a detailed numerical analysis of existing methods to compute the optimal reduced CTMC, given a partitioning of the network into metastable communities (macrostates) of nodes (microstates). We show that approaches based on linear algebra encounter numerical problems that arise from the requisite metastability. We propose an alternative approach using GT to compute the matrix of intermicrostate MFPTs in the original Markov chain, from which a matrix of weighted intermacrostate MFPTs can be obtained. We also propose an approximation to the weighted-MFPT matrix in the strongly metastable limit. Inversion of the weighted-MFPT matrix, which is better conditioned than the matrices that must be inverted in alternative dimensionality reduction schemes, then yields the optimal reduced Markov chain. The superior numerical stability of the GT approach therefore enables us to realize optimal Markovian coarse-graining of systems with rare event dynamics.
Collapse
Affiliation(s)
- Deepti Kannan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Thomas D Swinburne
- Aix-Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy, 13288 Marseille, France
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
12
|
Nagel D, Weber A, Stock G. MSMPathfinder: Identification of Pathways in Markov State Models. J Chem Theory Comput 2020; 16:7874-7882. [PMID: 33141565 DOI: 10.1021/acs.jctc.0c00774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Markov state models represent a popular means to interpret biomolecular processes in terms of memoryless transitions between metastable conformational states. To gain insight into the underlying mechanism, it is instructive to determine all relevant pathways between initial and final states of the process. Currently available methods, such as Markov chain Monte Carlo and transition path theory, are convenient for identifying the most frequented pathways. They are less suited to account for the typically huge amount of pathways with low probability which, though, may dominate the cumulative flux of the reaction. On the basis of a systematic construction of all possible pathways, the here proposed method MSMPathfinder is able to characterize the multitude of unique pathways (say, up to 1010) in a complex system and to quantitatively calculate their correct weights and associated waiting times with predefined accuracy. Adopting the chiral transitions of a peptide helix and the folding of the villin headpiece as model problems, mechanisms and associated waiting times of these processes are discussed using a kinetic network representation. The analysis reveals that the waiting time distribution may yield only little insight into the diversity of pathways, because the measured folding times do typically not reflect the most probable path lengths but rather the cumulative effect of many different pathways.
Collapse
Affiliation(s)
- Daniel Nagel
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Anna Weber
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| |
Collapse
|
13
|
Swinburne TD, Kannan D, Sharpe DJ, Wales DJ. Rare events and first passage time statistics from the energy landscape. J Chem Phys 2020; 153:134115. [PMID: 33032418 DOI: 10.1063/5.0016244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We analyze the probability distribution of rare first passage times corresponding to transitions between product and reactant states in a kinetic transition network. The mean first passage times and the corresponding rate constants are analyzed in detail for two model landscapes and the double funnel landscape corresponding to an atomic cluster. Evaluation schemes based on eigendecomposition and kinetic path sampling, which both allow access to the first passage time distribution, are benchmarked against mean first passage times calculated using graph transformation. Numerical precision issues severely limit the useful temperature range for eigendecomposition, but kinetic path sampling is capable of extending the first passage time analysis to lower temperatures, where the kinetics of interest constitute rare events. We then investigate the influence of free energy based state regrouping schemes for the underlying network. Alternative formulations of the effective transition rates for a given regrouping are compared in detail to determine their numerical stability and capability to reproduce the true kinetics, including recent coarse-graining approaches that preserve occupancy cross correlation functions. We find that appropriate regrouping of states under the simplest local equilibrium approximation can provide reduced transition networks with useful accuracy at somewhat lower temperatures. Finally, a method is provided to systematically interpolate between the local equilibrium approximation and exact intergroup dynamics. Spectral analysis is applied to each grouping of states, employing a moment-based mode selection criterion to produce a reduced state space, which does not require any spectral gap to exist, but reduces to gap-based coarse graining as a special case. Implementations of the developed methods are freely available online.
Collapse
Affiliation(s)
- Thomas D Swinburne
- Aix-Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy, 13288 Marseille, France
| | - Deepti Kannan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|