• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4614806)   Today's Articles (55)   Subscriber (49390)
For: Rauer C, Bereau T. Hydration free energies from kernel-based machine learning: Compound-database bias. J Chem Phys 2020;153:014101. [DOI: 10.1063/5.0012230] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Tolokh IS, Folescu DE, Onufriev AV. Inclusion of Water Multipoles into the Implicit Solvation Framework Leads to Accuracy Gains. J Phys Chem B 2024;128:5855-5873. [PMID: 38860842 PMCID: PMC11194828 DOI: 10.1021/acs.jpcb.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
2
Ferraz-Caetano J, Teixeira F, Cordeiro MNDS. Explainable Supervised Machine Learning Model To Predict Solvation Gibbs Energy. J Chem Inf Model 2024;64:2250-2262. [PMID: 37603608 PMCID: PMC11005042 DOI: 10.1021/acs.jcim.3c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 08/23/2023]
3
Bass L, Elder LH, Folescu DE, Forouzesh N, Tolokh IS, Karpatne A, Onufriev AV. Improving the Accuracy of Physics-Based Hydration-Free Energy Predictions by Machine Learning the Remaining Error Relative to the Experiment. J Chem Theory Comput 2024;20:396-410. [PMID: 38149593 PMCID: PMC10950260 DOI: 10.1021/acs.jctc.3c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
4
Liao M, Wu F, Yu X, Zhao L, Wu H, Zhou J. Random Forest Algorithm-Based Prediction of Solvation Gibbs Energies. J SOLUTION CHEM 2023. [DOI: 10.1007/s10953-023-01247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
5
Zhang ZY, Peng D, Liu L, Shen L, Fang WH. Machine Learning Prediction of Hydration Free Energy with Physically Inspired Descriptors. J Phys Chem Lett 2023;14:1877-1884. [PMID: 36779933 DOI: 10.1021/acs.jpclett.2c03858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
6
Low K, Coote ML, Izgorodina EI. Explainable Solvation Free Energy Prediction Combining Graph Neural Networks with Chemical Intuition. J Chem Inf Model 2022;62:5457-5470. [PMID: 36317829 DOI: 10.1021/acs.jcim.2c01013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
7
Alibakhshi A, Hartke B. Implicitly perturbed Hamiltonian as a class of versatile and general-purpose molecular representations for machine learning. Nat Commun 2022;13:1245. [PMID: 35273170 PMCID: PMC8913769 DOI: 10.1038/s41467-022-28912-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022]  Open
8
Gao P, Yang X, Tang YH, Zheng M, Andersen A, Murugesan V, Hollas A, Wang W. Graphical Gaussian process regression model for aqueous solvation free energy prediction of organic molecules in redox flow batteries. Phys Chem Chem Phys 2021;23:24892-24904. [PMID: 34724700 DOI: 10.1039/d1cp04475c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
9
Giannakoulias S, Shringari SR, Ferrie JJ, Petersson EJ. Biomolecular simulation based machine learning models accurately predict sites of tolerability to the unnatural amino acid acridonylalanine. Sci Rep 2021;11:18406. [PMID: 34526629 PMCID: PMC8443755 DOI: 10.1038/s41598-021-97965-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/17/2021] [Indexed: 11/08/2022]  Open
10
Çaylak O, Baumeier B. Machine Learning of Quasiparticle Energies in Molecules and Clusters. J Chem Theory Comput 2021;17:4891-4900. [PMID: 34314186 PMCID: PMC8359011 DOI: 10.1021/acs.jctc.1c00520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 11/30/2022]
11
Lim H, Jung Y. MLSolvA: solvation free energy prediction from pairwise atomistic interactions by machine learning. J Cheminform 2021;13:56. [PMID: 34332634 PMCID: PMC8325294 DOI: 10.1186/s13321-021-00533-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/15/2021] [Indexed: 01/04/2023]  Open
12
Ward L, Dandu N, Blaiszik B, Narayanan B, Assary RS, Redfern PC, Foster I, Curtiss LA. Graph-Based Approaches for Predicting Solvation Energy in Multiple Solvents: Open Datasets and Machine Learning Models. J Phys Chem A 2021;125:5990-5998. [PMID: 34191512 DOI: 10.1021/acs.jpca.1c01960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
13
Alibakhshi A, Hartke B. Improved prediction of solvation free energies by machine-learning polarizable continuum solvation model. Nat Commun 2021;12:3584. [PMID: 34145237 PMCID: PMC8213834 DOI: 10.1038/s41467-021-23724-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 05/12/2021] [Indexed: 11/30/2022]  Open
14
Zeni C, Rossi K, Glielmo A, de Gironcoli S. Compact atomic descriptors enable accurate predictions via linear models. J Chem Phys 2021;154:224112. [PMID: 34241204 DOI: 10.1063/5.0052961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]  Open
15
Meuwly M. Machine Learning for Chemical Reactions. Chem Rev 2021;121:10218-10239. [PMID: 34097378 DOI: 10.1021/acs.chemrev.1c00033] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
16
Ceriotti M, Clementi C, Anatole von Lilienfeld O. Machine learning meets chemical physics. J Chem Phys 2021;154:160401. [PMID: 33940847 DOI: 10.1063/5.0051418] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]  Open
17
Weinreich J, Browning NJ, von Lilienfeld OA. Machine learning of free energies in chemical compound space using ensemble representations: Reaching experimental uncertainty for solvation. J Chem Phys 2021;154:134113. [PMID: 33832231 DOI: 10.1063/5.0041548] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]  Open
18
Aggarwal A, Vinayak V, Bag S, Bhattacharyya C, Waghmare UV, Maiti PK. Predicting the DNA Conductance Using a Deep Feedforward Neural Network Model. J Chem Inf Model 2020;61:106-114. [PMID: 33320660 DOI: 10.1021/acs.jcim.0c01072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA