1
|
Seksaria H, Kishore A, De Sarkar A. Temperature-driven journey of dark excitons to efficient photocatalytic water splitting in β-AsP. Phys Chem Chem Phys 2024; 26:22882-22893. [PMID: 38979625 DOI: 10.1039/d4cp01937g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Limited availability of photogenerated charge carriers in two-dimensional (2D) materials, due to high exciton binding energies, is a major bottleneck in achieving efficient photocatalytic water splitting (PWS). Strong excitonic effects in 2D materials demand precise attention to electron-electron correlation, electron-hole interaction and electron-phonon coupling simultaneously. In this work, we explore the temperature-dependent electronic and optical responses of an efficient photocatalyst, blue-AsP (β-AsP), by integrating electron-phonon coupling into state-of-the-art GW + BSE calculations. Interestingly, strong electron-lattice interaction at high temperature promotes photocatalytic water splitting with an increasing supply of long-lived dark excitons. This work presents an atypical observation contrary to the general assumption that only bright excitons enhance the PWS due to prominent absorption. Dark excitons, due to the low recombination rate, exhibit long-lived photogenerated electron-hole pairs with high exciton lifetime increasing with temperature up to ∼0.25 μs.
Collapse
Affiliation(s)
- Harshita Seksaria
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab 140306, India.
| | - Amal Kishore
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab 140306, India.
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab 140306, India.
| |
Collapse
|
2
|
Tada H, Naya SI, Sugime H. Near Infrared Light-to-Heat Conversion for Liquid-Phase Oxidation Reactions by Antimony-Doped Tin Oxide Nanocrystals. Chemphyschem 2022; 24:e202200696. [PMID: 36535899 DOI: 10.1002/cphc.202200696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Effective utilization of the sunlight for chemical reactions is pivotal for dealing with the growing energy and environmental issues. So far, much effort has been focused on the development of semiconductor photocatalysts responsive to UV and visible light. However, the near infrared and infrared (NIR-IR) light occupying ∼50 % of the solar energy has usually been wasted because of the low photon energy insufficient for the band gap excitation. Antimony doping into SnO2 (ATO) induces strong absorption due to the conduction band electrons in the NIR region. The absorbed light energy is eventually converted to heat via the interaction between hot electrons and phonons. This Concept highlights the photothermal effect of ATO nanocrystals (NCs) on liquid-phase oxidation reactions through the NIR light-to-heat conversion. Under NIR illumination even at an intensity of ∼0.5 sun, the reaction field temperature on the catalyst surface is raised 20-30 K above the bulk solution temperature, while the latter is maintained near the ambient temperature. In some reactions, this photothermal local heating engenders the enhancement of not only the catalytic activity and selectivity but also the regeneration of catalytically active sites. Further, the photocatalytic activity of semiconductors can be promoted. Finally, the conclusions and possible subjects in the future are summarized.
Collapse
Affiliation(s)
- Hiroaki Tada
- Department of Applied Chemistry Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.,Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Shin-Ichi Naya
- Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Hisashi Sugime
- Department of Applied Chemistry Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| |
Collapse
|
3
|
Synthesis of tetracarboxy phthalocyanines modified TiO2 nanocomposite photocatalysts and investigation of photocatalytic decomposition of organic pollutant methylene blue under visible light. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Porz L, Scherer M, Huhn D, Heine LM, Britten S, Rebohle L, Neubert M, Brown M, Lascelles P, Kitson R, Rettenwander D, Fulanovic L, Bruder E, Breckner P, Isaia D, Frömling T, Rödel J, Rheinheimer W. Blacklight sintering of ceramics. MATERIALS HORIZONS 2022; 9:1717-1726. [PMID: 35451440 DOI: 10.1039/d2mh00177b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For millennia, ceramics have been densified via sintering in a furnace, a time-consuming and energy-intensive process. The need to minimize environmental impact calls for new physical concepts beyond large kilns relying on thermal radiation and insulation. Here, we realize ultrarapid heating with intense blue and UV-light. Thermal management is quantified in experiment and finite element modelling and features a balance between absorbed and radiated energy. With photon energy above the band gap to optimize absorption, bulk ceramics are sintered within seconds and with outstanding efficiency (≈2 kWh kg-1) independent of batch size. Sintering on-the-spot with blacklight as a versatile and widely applicable power source is demonstrated on ceramics needed for energy storage and conversion and in electronic and structural applications foreshadowing economic scalability.
Collapse
Affiliation(s)
- Lukas Porz
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Michael Scherer
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany
| | | | | | | | - Lars Rebohle
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | | | | | | - Daniel Rettenwander
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Lovro Fulanovic
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany
| | - Enrico Bruder
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany
| | - Patrick Breckner
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany
| | - Daniel Isaia
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany
| | - Till Frömling
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany
| | - Jürgen Rödel
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany
| | - Wolfgang Rheinheimer
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany
- Institute for Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
5
|
Recent advances in photo-enhanced dry reforming of methane: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2021.100468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Wang J, Wang Z, Wang W, Wang Y, Hu X, Liu J, Gong X, Miao W, Ding L, Li X, Tang J. Synthesis, modification and application of titanium dioxide nanoparticles: a review. NANOSCALE 2022; 14:6709-6734. [PMID: 35475489 DOI: 10.1039/d1nr08349j] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Titanium dioxide (TiO2) has been heavily investigated owing to its low cost, benign nature and strong photocatalytic ability. Thus, TiO2 has broad applications including photocatalysts, Li-ion batteries, solar cells, medical research and so on. However, the performance of TiO2 is not satisfactory due to many factors such as the broad band gap (3.01 to 3.2 eV) and fast recombination of electron-hole pairs (10-12 to 10-11 s). Plenty of work has been undertaken to improve the properties, such as structural and dopant modifications, which broaden the applications of TiO2. This review mainly discusses the aspects of TiO2-modified nanoparticles including synthetic methods, modifications and applications.
Collapse
Affiliation(s)
- Jinqi Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Zhiheng Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Wei Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xiaoli Hu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Jixian Liu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xuezhong Gong
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Wenli Miao
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Linliang Ding
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xinbo Li
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
7
|
Thermo-photoactivity of pristine and modified titania photocatalysts under UV and blue light. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Batista V, Li C, Smith W, Wang D. Introducing special issue on photocatalysis and photoelectrochemistry. J Chem Phys 2021; 154:190401. [PMID: 34240913 DOI: 10.1063/5.0053681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Victor Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Can Li
- Dalian Institute of Chemical Physics, Dalian, Liaoning, China
| | - Wilson Smith
- Delft Technological University, University of Colorado, NREL, Golden, Colorado 80401, USA
| | - Dunwei Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
9
|
J P, Kottam N, A R. Investigation of photocatalytic degradation of crystal violet and its correlation with bandgap in ZnO and ZnO/GO nanohybrid. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108460] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Abstract
Methane reforming is an important potential technology for solving both environmental and energy problems. This technology is important because methane is counted as a greenhouse gas, but on the other hand, it can be reformed into industrially valuable compounds. More research has focused on photocatalytic methane reforming, which has a higher activity than thermal catalysts under dark conditions. The reaction selectivity toward specific products in photocatalytic methane reforming is sometimes different from thermal catalyst systems. Herein, we discuss recent advances in photocatalytic methane reforming to provide various strategies for reforming.
Collapse
|
11
|
Kushida M, Yamaguchi A, Cho Y, Fujita T, Abe H, Miyauchi M. Gas‐Phase Photoelectrocatalysis Mediated by Oxygen Ions for Uphill Conversion of Greenhouse Gases. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Masaru Kushida
- Department of Materials Science and Engineering Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku Tokyo 152-8552 Japan
| | - Akira Yamaguchi
- Department of Materials Science and Engineering Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku Tokyo 152-8552 Japan
| | - Yohei Cho
- Department of Materials Science and Engineering Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku Tokyo 152-8552 Japan
| | - Takeshi Fujita
- Department of Environmental Science and Engineering Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
| | - Hideki Abe
- National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Masahiro Miyauchi
- Department of Materials Science and Engineering Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku Tokyo 152-8552 Japan
| |
Collapse
|