1
|
Tarábková H, Janda P. Effect of Graphite Aging on Its Wetting Properties and Surface Blocking by Gaseous Nanodomains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14154-14161. [PMID: 37734043 PMCID: PMC10552534 DOI: 10.1021/acs.langmuir.3c02151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Early works considered basal planes of highly ordered pyrolytic graphite (HOPG) as hydrophobic, relatively inert materials with low electrocatalytic activity due to nonpolar sp2 carbon. On the contrary, a freshly prepared HOPG surface exhibits intrinsically mildly hydrophilic properties, with a low contact angle of water, which increases after exposure to an ambient atmosphere. This process, called aging, ascribed to adsorption of airborne hydrocarbons, is reportedly accompanied by strong decay of electron transfer kinetics, the mechanism of which is not yet fully understood. Examining both freshly prepared and aged basal plane HOPG immersed in water by PeakForce quantitative nanomechanical imaging, we have found that aged HOPG is occupied by ambient gaseous nanodomains, the existence of which is explained by incomplete wetting. They cover up to 60% of the immersed surface and their incidence is in direct relation with graphite aging time. In contrast with aged graphite, gaseous nanodomains were absent on the freshly stripped HOPG surface. It can be concluded that ambient gaseous nanodomains can prevent aged basal plane HOPG from contact with aqueous media and may thus affect processes at the solid-liquid interface.
Collapse
Affiliation(s)
- Hana Tarábková
- Department of Electrochemical
Materials, J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, CZ-182 23 Prague 8, Czech Republic
| | - Pavel Janda
- Department of Electrochemical
Materials, J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, CZ-182 23 Prague 8, Czech Republic
| |
Collapse
|
2
|
Heima Y, Teshima H, Takahashi K. Nanoscale Contact Line Pinning Boosted by Ångström-Scale Surface Heterogeneity. J Phys Chem Lett 2023; 14:3561-3566. [PMID: 37017443 DOI: 10.1021/acs.jpclett.3c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The pinning effect plays an important role in many fluidic systems but remains poorly understood, especially at the nanoscale. In this study, we measured the contact angles of glycerol nanodroplets on three different substrates using atomic force microscopy. By comparison of the shapes of the three-dimensional images of droplets, we found that a possible origin of the long-discussed deviation of the contact angles of nanodroplets from the macroscopic value is the pinning force induced by ångström-scale surface heterogeneity. It was also revealed that the pinning forces acting on glycerol nanodroplets on a silicon dioxide surface are up to twice as large as those acting on macroscale droplets. On a substrate where the effect of pinning was strong, an unexpected irreversible change from an irregularly shaped droplet to an atomically flat liquid film occurred. This was explained by the transition of the dominant force from liquid/gas interfacial tension to an adsorption force.
Collapse
Affiliation(s)
- Yuta Heima
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hideaki Teshima
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Koji Takahashi
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Li D, Gu J, Li Y, Zhang Z, Ji Y. Manipulating Trapped Nanobubbles Moving and Coalescing with Surface Nanobubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12991-12998. [PMID: 36228139 DOI: 10.1021/acs.langmuir.2c02593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Trapped nanobubbles are observed nucleating at nanopits on a pitted substrate, while surface nanobubbles are usually formed on the smooth solid surface in water. In this work, trapped nanobubbles and surface nanobubbles were captured by a tapping-mode atomic force microscope (AFM) on a nanopitted substrate based on the temperature difference method. A single trapped nanobubble was manipulated to change into a surface nanobubble, then to change into the trapped nanobubble again. At the same time, surface nanobubbles can be moved to merge into a trapped nanobubble. Our results show that the scan load and the size of the scan area were the main factors that significantly affect the mobility of surface/trapped nanobubbles. The coalescence and mutual transformation of the two kinds of nanobubbles indicate that trapped nanobubbles and surface nanobubbles have the same chemical nature, which also provides vital experimental proof of the existence of nanobubbles in the course of contact line depinning. Our results are of great significance for understanding nanobubble stability and providing guidelines in some industrial applications.
Collapse
Affiliation(s)
- Dayong Li
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Juan Gu
- School of Mathematics and Information Science, Yantai University, Yantai 264005, China
| | - Yong Li
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Ziqun Zhang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Yutong Ji
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
4
|
Hirokawa S, Teshima H, Solís-Fernández P, Ago H, Li QY, Takahashi K. Pinning in a Contact and Noncontact Manner: Direct Observation of a Three-Phase Contact Line Using Graphene Liquid Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12271-12277. [PMID: 34644074 DOI: 10.1021/acs.langmuir.1c01589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pinning of a three-phase contact line at the nanoscale cannot be explained by conventional macroscale theories and thus requires an experimental insight to understand this phenomenon. We performed in-situ transmission electron microscopy observation of the three-phase contact lines of bubbles inside graphene liquid cells to experimentally investigate the causes of nanoscale pinning. In our observations, the three-phase contact line was not affected by the 0.6 nm-thick inhomogeneity of the graphene surface, but thicker metal nanoparticles with diameters of 2-10 nm and nanoflakes caused pinning of the gas-liquid interface. Notably, we found that flake-like objects can cause pinning that prevents the bubble overcome the flake object in a noncontact state, with a 2 nm-thick liquid film between them and the bubble. This phenomenon can be explained by the repulsive force obtained using the Derjaguin, Landau, Verwey, and Overbeek theory. We also observed that the flake temporally prevented the gas-liquid interface moving away from the flake. We discussed the physical mechanism of the attractive force-like phenomenon by considering the nanoconfinement effect of the liquid sandwiched by two graphene sheets and the hydration layer formed near the solid surface.
Collapse
Affiliation(s)
- Sota Hirokawa
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hideaki Teshima
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Pablo Solís-Fernández
- Global Innovation Center, Kyushu University, 6-1 Kasuga-koen, Kasuga-city, Fukuoka 816-8580, Japan
| | - Hiroki Ago
- Global Innovation Center, Kyushu University, 6-1 Kasuga-koen, Kasuga-city, Fukuoka 816-8580, Japan
| | - Qin-Yi Li
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Koji Takahashi
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|