1
|
Lu Z, Yu J, Wang K, Cheng W, Hou L. NIR light-triggered bursting of double-emulsion drops (DEDs) for microdroplet generation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6501-6508. [PMID: 39240212 DOI: 10.1039/d4ay01194e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Microdroplets have significant applications in microbiology, pharmaceuticals, cosmetics, and synthetic materials. Herein, we present for the first time, a near-infrared (NIR)-light-triggered double-emulsion drop (DED) bursting method for generating a large number of micro-droplets with a size of several microns. Under the irradiation of NIR light, the inner water phase of the DED containing a trace amount of Prussian blue (PB) rapidly heats up and evaporates rapidly to generate microbubbles due to the photothermal property of PB. By controlling the light intensity, the DED could be inflated by the constant coalescence of microbubbles, which then burst immediately and tear the middle oil phase to form a large number of microdroplets. The performance of the microdroplets generated by NIR-light-triggered DED bursting was investigated by varying the oil shell thickness (HO), oil phase viscosity (ηO) and oil type. HO and ηO were the key factors affecting the generation of microdroplets. DEDs with lower HO and ηO generated lower polydispersity and a large number of microdroplets via NIR-triggered DED bursting. The proportion of microdroplets of sizes below 10 μm reached up to 95%. Furthermore, camellia oil, as the middle oil phase of the DEDs, generated lower polydispersity and a large number of microdroplets measuring several microns. The as-developed bursting method has great potential to generate micro-droplets for micro-/nano- and biotechnology applications.
Collapse
Affiliation(s)
- Zhaoze Lu
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China.
| | - Jian Yu
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China.
| | - Kaihua Wang
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China.
| | - Wei Cheng
- Key Laboratory of Measuring & Online Assessment of Energy for Jiangsu Province Market Regulation, Suzhou Institute of Metrology, Suzhou, 215128, China
| | - Likai Hou
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Yang C, Liu X, Song X, Zhang L. Design and batch fabrication of anisotropic microparticles toward small-scale robots using microfluidics: recent advances. LAB ON A CHIP 2024; 24:4514-4535. [PMID: 39206574 DOI: 10.1039/d4lc00566j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Small-scale robots with shape anisotropy have garnered significant scientific interest due to their enhanced mobility and precise control in recent years. Traditionally, these miniature robots are manufactured using established techniques such as molding, 3D printing, and microfabrication. However, the advent of microfluidics in recent years has emerged as a promising manufacturing technology, capitalizing on the precise and dynamic manipulation of fluids at the microscale to fabricate various complex-shaped anisotropic particles. This offers a versatile and controlled platform, enabling the efficient fabrication of small-scale robots with tailored morphologies and advanced functionalities from the microfluidic-derived anisotropic microparticles at high throughput. This review highlights the recent advances in the microfluidic fabrication of anisotropic microparticles and their potential applications in small-scale robots. In this review, the term 'small-scale robots' broadly encompasses micromotors endowed with capabilities for locomotion and manipulation. Firstly, the fundamental strategies for liquid template formation and the methodologies for generating anisotropic microparticles within the microfluidic system are briefly introduced. Subsequently, the functionality of shape-anisotropic particles in forming components for small-scale robots and actuation mechanisms are emphasized. Attention is then directed towards the diverse applications of these microparticle-derived microrobots in a variety of fields, including pollution remediation, cell microcarriers, drug delivery, and biofilm eradication. Finally, we discuss future directions for the fabrication and development of miniature robots from microfluidics, shedding light on the evolving landscape of this field.
Collapse
Affiliation(s)
- Chaoyu Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Xurui Liu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Xin Song
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| |
Collapse
|
3
|
Zhu Z, Chen T, Huang F, Wang S, Zhu P, Xu RX, Si T. Free-Boundary Microfluidic Platform for Advanced Materials Manufacturing and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304840. [PMID: 37722080 DOI: 10.1002/adma.202304840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Microfluidics, with its remarkable capacity to manipulate fluids and droplets at the microscale, has emerged as a powerful platform in numerous fields. In contrast to conventional closed microchannel microfluidic systems, free-boundary microfluidic manufacturing (FBMM) processes continuous precursor fluids into jets or droplets in a relatively spacious environment. FBMM is highly regarded for its superior flexibility, stability, economy, usability, and versatility in the manufacturing of advanced materials and architectures. In this review, a comprehensive overview of recent advancements in FBMM is provided, encompassing technical principles, advanced material manufacturing, and their applications. FBMM is categorized based on the foundational mechanisms, primarily comprising hydrodynamics, interface effects, acoustics, and electrohydrodynamic. The processes and mechanisms of fluid manipulation are thoroughly discussed. Additionally, the manufacturing of advanced materials in various dimensions ranging from zero-dimensional to three-dimensional, as well as their diverse applications in material science, biomedical engineering, and engineering are presented. Finally, current progress is summarized and future challenges are prospected. Overall, this review highlights the significant potential of FBMM as a powerful tool for advanced materials manufacturing and its wide-ranging applications.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Tianao Chen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Fangsheng Huang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shiyu Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Ting Si
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
4
|
Roudini M, Manuel Rosselló J, Manor O, Ohl CD, Winkler A. Acoustic resonance effects and cavitation in SAW aerosol generation. ULTRASONICS SONOCHEMISTRY 2023; 98:106530. [PMID: 37515911 PMCID: PMC10407539 DOI: 10.1016/j.ultsonch.2023.106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
The interaction of surface acoustic waves (SAWs) with liquids enables the production of aerosols with adjustable droplet sizes in the micrometer range expelled from a very compact source. Understanding the nonlinear acousto-hydrodynamics of SAWs with a regulated micro-scale liquid film is essential for acousto-microfluidics platforms, particularly aerosol generators. In this study, we demonstrate the presence of micro-cavitation in a MHz-frequency SAW aerosol generation platform, which is touted as a leap in aerosol technology with versatile application fields including biomolecule inhalation therapy, micro-chromatography and spectroscopy, olfactory displays, and material deposition. Using analysis methods with high temporal and spatial resolution, we demonstrate that SAWs stabilize spatially arranged liquid micro-domes atop the generator's surface. Our experiments show that these liquid domes become acoustic resonators with highly fluctuating pressure amplitudes that can even nucleate cavitation bubbles, as supported by analytical modeling. The observed fragmentation of liquid domes indicates the participation of three droplet generation mechanisms, including cavitation and capillary-wave instabilities. During aerosol generation, the cavitation bubbles contribute to the ejection of droplets from the liquid domes and also explain observed microstructural damage patterns on the chip surface eventually caused by cavitation-based erosion.
Collapse
Affiliation(s)
- Mehrzad Roudini
- SAWLab Saxony, Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, Dresden 01069, Germany.
| | - Juan Manuel Rosselló
- Otto von Guerricke University, Institute for Physics, Universitätsplatz. 2, Magdeburg 39106, Germany
| | - Ofer Manor
- Technion-Israel Institute of Technology, Department of Chemical Engineering, Haifa 3200003, Israel
| | - Claus-Dieter Ohl
- Otto von Guerricke University, Institute for Physics, Universitätsplatz. 2, Magdeburg 39106, Germany
| | - Andreas Winkler
- SAWLab Saxony, Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, Dresden 01069, Germany
| |
Collapse
|
5
|
Ning J, Lei Y, Hu H, Gai C. A Comprehensive Review of Surface Acoustic Wave-Enabled Acoustic Droplet Ejection Technology and Its Applications. MICROMACHINES 2023; 14:1543. [PMID: 37630082 PMCID: PMC10456473 DOI: 10.3390/mi14081543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023]
Abstract
This review focuses on the development of surface acoustic wave-enabled acoustic drop ejection (SAW-ADE) technology, which utilizes surface acoustic waves to eject droplets from liquids without touching the sample. The technology offers advantages such as high throughput, high precision, non-contact, and integration with automated systems while saving samples and reagents. The article first provides an overview of the SAW-ADE technology, including its basic theory, simulation verification, and comparison with other types of acoustic drop ejection technology. The influencing factors of SAW-ADE technology are classified into four categories: fluid properties, device configuration, presence of channels or chambers, and driving signals. The influencing factors discussed in detail from various aspects, such as the volume, viscosity, and surface tension of the liquid; the type of substrate material, interdigital transducers, and the driving waveform; sessile droplets and fluid in channels/chambers; and the power, frequency, and modulation of the input signal. The ejection performance of droplets is influenced by various factors, and their optimization can be achieved by taking into account all of the above factors and designing appropriate configurations. Additionally, the article briefly introduces the application scenarios of SAW-ADE technology in bioprinters and chemical analyses and provides prospects for future development. The article contributes to the field of microfluidics and lab-on-a-chip technology and may help researchers to design and optimize SAW-ADE systems for specific applications.
Collapse
Affiliation(s)
| | | | - Hong Hu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; (J.N.)
| | | |
Collapse
|
6
|
Nampoothiri KN, Nath A, Satpathi NS, Sen AK. Deicing of Sessile Droplets Using Surface Acoustic Waves. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3934-3941. [PMID: 36883239 DOI: 10.1021/acs.langmuir.2c03208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Deicing has significant relevance in various applications such as transportation, energy production, and telecommunication. The use of surface acoustic waves (SAWs) is an attractive option for deicing as it offers several advantages such as localized heating, in situ control, low power, and system integration for highly efficient deicing. Here, we report an understanding of the dynamics of deicing of microlitre volume water droplets (1 to 30 μL) exposed to low power (0.3 W) SAW actuation using an interdigitated electrode on a piezoelectric (LiNbO3) substrate. We study the time variation of the volume of liquid water from the onset of SAW actuation to complete deicing, which takes 2.5 to 35 s depending on the droplet volume. The deicing phenomenon is attributed to acoustothermal heating which is found to be greatly influenced by the loss of ice adhesion with the substrate and the acoustic streaming within the liquid water. Acoustothermal heating inside the droplet is characterized by the temperature distribution inside the droplet using infrared thermography, and acoustic streaming is observed using dye-based optical microscopy. A rapid enhancement in deicing is observed upon the detachment of ice from the substrate and the onset of acoustic streaming, marked by a sudden increase in the liquid water volume, droplet temperature, and heat transfer coefficient. The deicing time is found to increase linearly with droplet volume as observed from experiments and further verified using a theoretical model. Our study provides an improved understanding of the recently introduced SAW-based deicing technique that may open up the avenue for a suitable alternative to standard deicing protocols.
Collapse
Affiliation(s)
- K N Nampoothiri
- Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu 600036, India
- Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai, Tamilnadu 601103, India
| | - A Nath
- Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu 600036, India
| | - N S Satpathi
- Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu 600036, India
| | - A K Sen
- Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu 600036, India
- Micro Nano Bio-Fluidics Group, Indian Institute of Technology Madras, Chennai, Tamilnadu 600036, India
| |
Collapse
|
7
|
Lathia R, Nampoothiri KN, Sagar N, Bansal S, Modak CD, Sen P. Advances in Microscale Droplet Generation and Manipulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2461-2482. [PMID: 36779356 DOI: 10.1021/acs.langmuir.2c02905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microscale droplet generation and manipulation have widespread applications in numerous fields, from biochemical assays to printing and additive manufacturing. There are several techniques for droplet handling. Most techniques, however, can generate and work with only a limited range of droplet sizes. Furthermore, there are constraints regarding the workable variety of fluid properties (e.g., viscosity, surface tension, mass loading, etc.). Recent works have focused on developing techniques to overcome these limitations. This feature article discusses advances in this area that cover a wide range of droplet sizes from subpicoliter to microliter.
Collapse
Affiliation(s)
- Rutvik Lathia
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Krishnadas Narayanan Nampoothiri
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai 601103, India
| | - Nitish Sagar
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Shubhi Bansal
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- University College London, London WC1E 6BT, U.K
| | - Chandantaru Dey Modak
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, ESPCI Paris, 10 rue Vauquelin, 75005 Paris, France
| | - Prosenjit Sen
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Wei W, Wang Y, Wang Z, Duan X. Microscale acoustic streaming for biomedical and bioanalytical applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Song S, Wang Q, Zhou J, Riaud A. Design of interdigitated transducers for acoustofluidic applications. NANOTECHNOLOGY AND PRECISION ENGINEERING 2022. [DOI: 10.1063/10.0013405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Interdigitated transducers (IDTs) were originally designed as delay lines for radars. Half a century later, they have found new life as actuators for microfluidic systems. By generating strong acoustic fields, they trigger nonlinear effects that enable pumping and mixing of fluids, and moving particles without contact. However, the transition from signal processing to actuators comes with a range of challenges concerning power density and spatial resolution that have spurred exciting developments in solid-state acoustics and especially in IDT design. Assuming some familiarity with acoustofluidics, this paper aims to provide a tutorial for IDT design and characterization for the purpose of acoustofluidic actuation. It is targeted at a diverse audience of researchers in various fields, including fluid mechanics, acoustics, and microelectronics.
Collapse
Affiliation(s)
- Shuren Song
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, People’s Republic of China
| | - Qi Wang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, People’s Republic of China
| | - Jia Zhou
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, People’s Republic of China
| | - Antoine Riaud
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
10
|
Nampoothiri KN, Satpathi NS, Sen AK. Surface acoustic wave-based generation and transfer of droplets onto wettable substrates. RSC Adv 2022; 12:23400-23410. [PMID: 36090390 PMCID: PMC9382648 DOI: 10.1039/d2ra04089a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
Fluid manipulation using surface acoustic waves (SAW) has been utilized as a promising technique in the field of microfluidics due to its numerous advantages, over other active techniques, such as low power requirement, facile fabrication methods, and non-invasive nature. Even though SAW-based generation of micron-sized droplets through atomization has been studied, the role of substrate wettability on the characteristics of the transferred droplets has not been explored to date. Here, we study the generation and effective transfer of micron-sized droplets using SAW onto wettable substrates whose water contact angles vary from 5° to 145°. The characteristics of transferred droplets after impacting the wettable substrates are characterized in terms of the contact line diameter and polydispersity index. A theoretical model is formulated to predict the initial average size of the transferred droplets on the wettable substrates of different contact angles. The variation of polydispersity and number density with contact angle is explained by considering droplet coalescence and bouncing. The relevance of the technique in biological assays is demonstrated by transferring droplets of streptavidin protein samples onto a substrate.
Collapse
Affiliation(s)
| | - Niladri Sekhar Satpathi
- Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras Chennai-600036 India
| | - Ashis Kumar Sen
- Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras Chennai-600036 India
- Micro Nano Bio Fluidics Group, Indian Institute of Technology Madras Chennai-600036 India
| |
Collapse
|
11
|
Simulations and Experimental Analysis of a High Viscosity Inkjet Printing Device Based on Fabry-Pérot Resonator. SENSORS 2022; 22:s22093363. [PMID: 35591053 PMCID: PMC9104864 DOI: 10.3390/s22093363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022]
Abstract
The study investigates the effect of changing various input parameters on the pressure responses at acoustic cavities of a droplet-based acoustic printing device consisting of a Fabry–Pérot (FP) resonator and a standing wave-source chamber. The standing wave of the acoustic radiation pressure at the FP resonator is analyzed. The behavior of the standing wave and acoustic radiation force at the FP resonator is presented and compared with the measured results by varying the position of the standing wave-generating plate. The pressure changes inside the standing wave-source chamber are investigated and discussed to determine the reason for the sudden high-pressure drop at the FP resonator. Furthermore, the effects of inserting the nozzle and droplet inside the FP resonator on the standing wave and acoustic radiation force are analyzed. Experimental analysis is performed by collecting acoustic pressure data at the outlet of the FP resonator. The simulated and measured pressure drop behaviors are compared. The presented numerical approach can be used to set optimal design guidelines for obtaining a higher acoustic pressure inside the acoustic cavities of droplet-based acoustic jetting and other acoustofluidic devices.
Collapse
|
12
|
Mazalan MB, Noor AM, Wahab Y, Yahud S, Zaman WSWK. Current Development in Interdigital Transducer (IDT) Surface Acoustic Wave Devices for Live Cell In Vitro Studies: A Review. MICROMACHINES 2021; 13:mi13010030. [PMID: 35056195 PMCID: PMC8779155 DOI: 10.3390/mi13010030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Acoustics have a wide range of uses, from noise-cancelling to ultrasonic imaging. There has been a surge in interest in developing acoustic-based approaches for biological and biomedical applications in the last decade. This review focused on the application of surface acoustic waves (SAW) based on interdigital transducers (IDT) for live-cell investigations, such as cell manipulation, cell separation, cell seeding, cell migration, cell characteristics, and cell behaviours. The approach is also known as acoustofluidic, because the SAW device is coupled with a microfluidic system that contains live cells. This article provides an overview of several forms of IDT of SAW devices on recently used cells. Conclusively, a brief viewpoint and overview of the future application of SAW techniques in live-cell investigations were presented.
Collapse
Affiliation(s)
- Mazlee Bin Mazalan
- AMBIENCE, Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia; (A.M.N.); (Y.W.); (S.Y.)
- Correspondence: (M.B.M.); (W.S.W.K.Z.)
| | - Anas Mohd Noor
- AMBIENCE, Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia; (A.M.N.); (Y.W.); (S.Y.)
| | - Yufridin Wahab
- AMBIENCE, Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia; (A.M.N.); (Y.W.); (S.Y.)
| | - Shuhaida Yahud
- AMBIENCE, Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia; (A.M.N.); (Y.W.); (S.Y.)
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Selangor, Malaysia
- Correspondence: (M.B.M.); (W.S.W.K.Z.)
| |
Collapse
|
13
|
Farooq U, Liu Y, Li P, Deng Z, Liu X, Zhou W, Yi S, Rong N, Meng L, Niu L, Zheng H. Acoustofluidic dynamic interfacial tensiometry. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:3608. [PMID: 34852573 DOI: 10.1121/10.0007161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The interfacial tension (IFT) of fluids plays an essential role in industrial, biomedical, and synthetic chemistry applications; however, measuring IFT at ultralow volumes is challenging. Here, we report a novel method for sessile drop tensiometry using surface acoustic waves (SAWs). The IFT of the fluids was determined by acquiring the silhouette of an axisymmetric sessile drop and applying iterative fitting using Taylor's deformation equation. Owing to physiochemical differences, upon interacting with acoustic waves, each microfluid has a different streaming velocity. This streaming velocity dictates any subsequent changes in droplet shape (i.e., height and width). We demonstrate the effectiveness of the proposed SAW-based tensiometry technique using blood plasma to screen for high leptin levels. The proposed device can measure the IFT of microscale liquid volumes (up to 1 μL) with an error margin of only ±5% (at 25 °C), which deviates from previous reported results. As such, this method provides pathologists with a solution for the pre-diagnosis of various blood-related diseases.
Collapse
Affiliation(s)
- Umar Farooq
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Yuanting Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengqi Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zhiting Deng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Xiufang Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Wei Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Shasha Yi
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Ning Rong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| |
Collapse
|