1
|
Fan JJ, Ou ZY, Zhang Z. Entangled photons enabled ultrafast stimulated Raman spectroscopy for molecular dynamics. LIGHT, SCIENCE & APPLICATIONS 2024; 13:163. [PMID: 39004616 PMCID: PMC11247098 DOI: 10.1038/s41377-024-01492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 07/16/2024]
Abstract
Quantum entanglement has emerged as a great resource for studying the interactions between molecules and radiation. We propose a new scheme of stimulated Raman scattering with entangled photons. A quantum ultrafast Raman spectroscopy is developed for condensed-phase molecules, to monitor the exciton populations and coherences. Analytic results are obtained, showing an entanglement-enabled time-frequency scale not attainable by classical light. The Raman signal presents an unprecedented selectivity of molecular correlation functions, as a result of the Hong-Ou-Mandel interference. Our work suggests a new paradigm of using an unconventional interferometer as part of spectroscopy, with the potential to unveil advanced information about complex materials.
Collapse
Affiliation(s)
- Jiahao Joel Fan
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Zhe-Yu Ou
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Zhedong Zhang
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Kim J. Practical Method for Achieving Single-Photon Femtosecond Time-Resolved Spectroscopy: Transient Stimulated Emission. J Phys Chem Lett 2024; 15:5407-5412. [PMID: 38739918 DOI: 10.1021/acs.jpclett.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Recent advances in single-photon femtosecond spectroscopy have highlighted the power of entangled photons in probing the properties of materials, previously inaccessible through semiclassical spectroscopic approaches. In this study, we theoretically propose a new single-photon-based femtosecond time-resolved spectroscopy technique termed single-photon transient stimulated emission (SP-TSE). SP-TSE not only enables the selective investigation of singly excited superposition states but also harnesses the quantum mechanical nature of photons for the efficient data acquisition of transient responses, thereby supporting the feasibility of experimental realization of SP-TSE. The key aspect of SP-TSE is the selective detection of two-photon states produced through stimulated emission using coincidence counting techniques. Our theoretical framework, supported by numerical simulations, demonstrates the efficacy in capturing the pure decoherence dynamics of a model molecular cavity, highlighting its potential to reveal quantum mechanical properties that are difficult to observe with semiclassical femtosecond time-resolved experiments.
Collapse
Affiliation(s)
- JunWoo Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
3
|
Schlawin F. Two-photon absorption cross sections of pulsed entangled beams. J Chem Phys 2024; 160:144117. [PMID: 38619059 DOI: 10.1063/5.0196817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Entangled two-photon absorption (ETPA) could form the basis of nonlinear quantum spectroscopy at very low photon fluxes, since, at sufficiently low photon fluxes, ETPA scales linearly with the photon flux. When different pairs start to overlap temporally, accidental coincidences are thought to give rise to a "classical" quadratic scaling that dominates the signal at large photon fluxes and, thus, recovers a supposedly classical regime, where any quantum advantage is thought to be lost. Here, we scrutinize this assumption and demonstrate that quantum-enhanced absorption cross sections can persist even for very large photon numbers. To this end, we use a minimal model for quantum light, which can interpolate continuously between the entangled pair and a high-photon-flux limit, to analytically derive ETPA cross sections and the intensity crossover regime. We investigate the interplay between spectral and spatial degrees of freedom and how linewidth broadening of the sample impacts the experimentally achievable enhancement.
Collapse
Affiliation(s)
- Frank Schlawin
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany; University of Hamburg, Luruper Chaussee 149, Hamburg, Germany; and The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| |
Collapse
|
4
|
Fujihashi Y, Ishizaki A, Shimizu R. Pathway selectivity in time-resolved spectroscopy using two-photon coincidence counting with quantum entangled photons. J Chem Phys 2024; 160:104201. [PMID: 38456524 DOI: 10.1063/5.0189134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Ultrafast optical spectroscopy is a powerful technique for studying the dynamic processes of molecular systems in condensed phases. However, in molecular systems containing many dye molecules, the spectra can become crowded and difficult to interpret owing to the presence of multiple nonlinear optical contributions. In this work, we theoretically propose time-resolved spectroscopy based on the coincidence counting of two entangled photons generated via parametric down-conversion with a monochromatic laser. We demonstrate that the use of two-photon counting detection of entangled photon pairs enables the selective elimination of the excited-state absorption signal. This selective elimination cannot be realized with classical coherent light. We anticipate that the proposed spectroscopy will help simplify the spectral interpretation of complex molecular and material systems comprising multiple molecules.
Collapse
Affiliation(s)
- Yuta Fujihashi
- Department of Engineering Science, The University of Electro-Communications, Chofu 182-8585, Japan
| | - Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Ryosuke Shimizu
- Department of Engineering Science, The University of Electro-Communications, Chofu 182-8585, Japan
- Institute for Advanced Science, The University of Electro-Communications, Chofu 182-8585, Japan
| |
Collapse
|
5
|
Fujihashi Y, Miwa K, Higashi M, Ishizaki A. Probing exciton dynamics with spectral selectivity through the use of quantum entangled photons. J Chem Phys 2023; 159:114201. [PMID: 37712788 DOI: 10.1063/5.0169768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Quantum light is increasingly recognized as a promising resource for developing optical measurement techniques. Particular attention has been paid to enhancing the precision of the measurements beyond classical techniques by using nonclassical correlations between quantum entangled photons. Recent advances in the quantum optics technology have made it possible to manipulate spectral and temporal properties of entangled photons, and photon correlations can facilitate the extraction of matter information with relatively simple optical systems compared to conventional schemes. In these respects, the applications of entangled photons to time-resolved spectroscopy can open new avenues for unambiguously extracting information on dynamical processes in complex molecular and materials systems. Here, we propose time-resolved spectroscopy in which specific signal contributions are selectively enhanced by harnessing nonclassical correlations of entangled photons. The entanglement time characterizes the mutual delay between an entangled twin and determines the spectral distribution of photon correlations. The entanglement time plays a dual role as the knob for controlling the accessible time region of dynamical processes and the degrees of spectral selectivity. In this sense, the role of the entanglement time is substantially equivalent to the temporal width of the classical laser pulse. The results demonstrate that the application of quantum entangled photons to time-resolved spectroscopy leads to monitoring dynamical processes in complex molecular and materials systems by selectively extracting desired signal contributions from congested spectra. We anticipate that more elaborately engineered photon states would broaden the availability of quantum light spectroscopy.
Collapse
Affiliation(s)
- Yuta Fujihashi
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Kuniyuki Miwa
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| |
Collapse
|
6
|
Ko L, Cook RL, Whaley KB. Emulating Quantum Entangled Biphoton Spectroscopy Using Classical Light Pulses. J Phys Chem Lett 2023; 14:8050-8059. [PMID: 37652533 PMCID: PMC10510434 DOI: 10.1021/acs.jpclett.3c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023]
Abstract
We show that for a class of quantum light spectroscopy (QLS) experiments using n = 0, 1, 2, ··· classical light pulses and an entangled photon pair (a biphoton state) where one photon acts as a reference without interacting with the matter sample, identical signals can be obtained by replacing the biphotons with classical-like coherent states of light, where these are defined explicitly in terms of the parameters of the biphoton states. An input-output formulation of quantum nonlinear spectroscopy is used to prove this equivalence. We demonstrate the equivalence numerically by comparing a classical pump-quantum probe experiment with the corresponding classical pump-classical probe experiment. This analysis shows that understanding the equivalence between entangled biphoton probes and carefully designed classical-like coherent state probes leads to quantum-inspired classical experiments that yield equivalent signals and provides insights for the future design of QLS experiments that could provide a true quantum advantage.
Collapse
Affiliation(s)
- Liwen Ko
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - Robert L. Cook
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - K. Birgitta Whaley
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Jang SJ, Burghardt I, Hsu CP, Bardeen CJ. Excitons: Energetics and spatiotemporal dynamics. J Chem Phys 2021; 155:200401. [PMID: 34852498 DOI: 10.1063/5.0075292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, USA and PhD Programs in Chemistry and Physics, and Initiative for the Theoretical Sciences, Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan and Physics Division, National Center for Theoretical Sciences, Taipei 106, Taiwan
| | - Christopher J Bardeen
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, USA
| |
Collapse
|
8
|
Fujihashi Y, Ishizaki A. Achieving two-dimensional optical spectroscopy with temporal and spectral resolution using quantum entangled three photons. J Chem Phys 2021; 155:044101. [PMID: 34340393 DOI: 10.1063/5.0056808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent advances in techniques for generating quantum light have stimulated research on novel spectroscopic measurements using quantum entangled photons. One such spectroscopy technique utilizes non-classical correlations among entangled photons to enable measurements with enhanced sensitivity and selectivity. Here, we investigate the spectroscopic measurement utilizing entangled three photons. In this measurement, time-resolved entangled photon spectroscopy with monochromatic pumping [A. Ishizaki, J. Chem. Phys. 153, 051102 (2020)] is integrated with the frequency-dispersed two-photon counting technique, which suppresses undesired accidental photon counts in the detector and thus allows one to separate the weak desired signal. This time-resolved frequency-dispersed two-photon counting signal, which is a function of two frequencies, is shown to provide the same information as that of coherent two-dimensional optical spectra. The spectral distribution of the phase-matching function works as a frequency filter to selectively resolve a specific region of the two-dimensional spectra, whereas the excited-state dynamics under investigation are temporally resolved in the time region longer than the entanglement time. The signal is not subject to Fourier limitations on the joint temporal and spectral resolution, and therefore, it is expected to be useful for investigating complex molecular systems in which multiple electronic states are present within a narrow energy range.
Collapse
Affiliation(s)
- Yuta Fujihashi
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| |
Collapse
|
9
|
Carnio EG, Buchleitner A, Schlawin F. Optimization of selective two-photon absorption in cavity polaritons. J Chem Phys 2021; 154:214114. [PMID: 34240974 DOI: 10.1063/5.0049863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigate optimal states of photon pairs to excite a target transition in a multilevel quantum system. With the help of coherent control theory for two-photon absorption with quantum light, we infer the maximal population achievable by optimal entangled vs separable states of light. Interference between excitation pathways as well as the presence of nearby states may hamper the selective excitation of a particular target state, but we show that quantum correlations can help to overcome this problem and enhance the achievable "selectivity" between two energy levels, i.e., the relative difference in population transferred into each of them. We find that the added value of optimal entangled states of light increases with broadening linewidths of the target states.
Collapse
Affiliation(s)
- Edoardo G Carnio
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| | - Andreas Buchleitner
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| | - Frank Schlawin
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| |
Collapse
|