1
|
Majee K, Chakraborty S, Mukhopadhyay T, Nayak MK, Dutta AK. A reduced cost four-component relativistic unitary coupled cluster method for atoms and molecules. J Chem Phys 2024; 161:034101. [PMID: 39007370 DOI: 10.1063/5.0207091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
We present a four-component relativistic unitary coupled cluster method for atoms and molecules. We have used commutator-based non-perturbative approximation using the "Bernoulli expansion" to derive an approximation to the relativistic unitary coupled cluster method. The performance of the full quadratic unitary coupled-cluster singles and doubles method (qUCCSD), as well as a perturbative approximation variant (UCC3), has been reported for both energies and properties. It can be seen that both methods give results comparable to those of the standard relativistic coupled cluster method. The qUCCSD method shows better agreement with experimental results due to the better inclusion of relaxation effects. The relativistic UCC3 and qUCCSD methods can simulate the spin-forbidden transition with easy access to transition properties. A natural spinor-based scheme to reduce the computational cost of relativistic UCC3 and qUCCSD methods has been discussed.
Collapse
Affiliation(s)
- Kamal Majee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudipta Chakraborty
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tamoghna Mukhopadhyay
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Malaya K Nayak
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Kumar A, Asthana A, Abraham V, Crawford TD, Mayhall NJ, Zhang Y, Cincio L, Tretiak S, Dub PA. Quantum Simulation of Molecular Response Properties in the NISQ Era. J Chem Theory Comput 2023; 19:9136-9150. [PMID: 38054645 DOI: 10.1021/acs.jctc.3c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Accurate modeling of the response of molecular systems to an external electromagnetic field is challenging on classical computers, especially in the regime of strong electronic correlation. In this article, we develop a quantum linear response (qLR) theory to calculate molecular response properties on near-term quantum computers. Inspired by the recently developed variants of the quantum counterpart of equation of motion (qEOM) theory, the qLR formalism employs "killer condition" satisfying excitation operator manifolds that offer a number of theoretical advantages along with reduced quantum resource requirements. We also used the qEOM framework in this work to calculate the state-specific response properties. Further, through noiseless quantum simulations, we show that response properties calculated using the qLR approach are more accurate than the ones obtained from the classical coupled-cluster-based linear response models due to the improved quality of the ground-state wave function obtained using the ADAPT-VQE algorithm.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ayush Asthana
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Vibin Abraham
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - T Daniel Crawford
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas J Mayhall
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Lukasz Cincio
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pavel A Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
3
|
Li S, Misiewicz JP, Evangelista FA. Intruder-free cumulant-truncated driven similarity renormalization group second-order multireference perturbation theory. J Chem Phys 2023; 159:114106. [PMID: 37712785 DOI: 10.1063/5.0159403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Accurate multireference electronic structure calculations are important for constructing potential energy surfaces. Still, even in the case of low-scaling methods, their routine use is limited by the steep growth of the computational and storage costs as the active space grows. This is primarily due to the occurrence of three- and higher-body density matrices or, equivalently, their cumulants. This work examines the effect of various cumulant truncation schemes on the accuracy of the driven similarity renormalization group second-order multireference perturbation theory. We test four different levels of three-body reduced density cumulant truncations that set different classes of cumulant elements to zero. Our test cases include the singlet-triplet gap of CH2, the potential energy curves of the XΣg+1 and AΣu+3 states of N2, and the singlet-triplet splittings of oligoacenes. Our results show that both relative and absolute errors introduced by these cumulant truncations can be as small as 0.5 kcal mol-1 or less. At the same time, the amount of memory required is reduced from O(NA6) to O(NA5), where NA is the number of active orbitals. No additional regularization is needed to prevent the intruder state problem in the cumulant-truncated second-order driven similarity renormalization group multireference perturbation theory methods.
Collapse
Affiliation(s)
- Shuhang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Jonathon P Misiewicz
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
4
|
Dreuw A, Papapostolou A, Dempwolff AL. Algebraic Diagrammatic Construction Schemes Employing the Intermediate State Formalism: Theory, Capabilities, and Interpretation. J Phys Chem A 2023; 127:6635-6646. [PMID: 37498297 DOI: 10.1021/acs.jpca.3c02761] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Algebraic diagrammatic construction (ADC) schemes represent a family of ab initio methods for the calculation of excited electronic states and electron-detached and -attached states. All ADC methods have been demonstrated to possess great potential for molecular applications, e.g., for the calculation of absorption or photoelectron spectra or electron attachment processes. ADC originates from Green's function or propagator theory; however, most recent ADC developments heavily rely on the intermediate state representation or effective Liouvillian formalisms, which comprise new ADC methods and computational schemes for high-order properties. The different approaches for the calculation of excitation energies, ionization potentials, and electron affinities are intimately related, and they provide a coherent description of these quantities at equivalent levels of theory and with comparable errors. Most quantum chemical program packages contain ADC methods; however, the most complete ADC suite of methods can be found in the recent release of Q-Chem.
Collapse
Affiliation(s)
- Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | - Antonia Papapostolou
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | - Adrian L Dempwolff
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Knysh I, Villalobos-Castro JDJ, Duchemin I, Blase X, Jacquemin D. Exploring Bethe-Salpeter Excited-State Dipoles: The Challenging Case of Increasingly Long Push-Pull Oligomers. J Phys Chem Lett 2023; 14:3727-3734. [PMID: 37042642 DOI: 10.1021/acs.jpclett.3c00699] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The change of molecular dipole moment induced by photon absorption is key to interpret the measured optical spectra. Except for compact molecules, time-dependent density functional theory (TD-DFT) remains the only theory allowing to quickly predict excited-state dipoles (μES), albeit with a strong dependency on the selected exchange-correlation functional. This Letter presents the first assessment of the performances of the many-body Green's function Bethe-Salpeter equation (BSE) formalism for the evaluation of the μES. We explore increasingly long push-pull oligomers as they present an excited-state nature evolving with system size. This work shows that BSE's μES do present the same evolution with oligomeric length as their CC2 and CCSD counterparts, with a dependency on the starting exchange-correlation functional that is strongly decreased as compared to TD-DFT. This Letter demonstrates that BSE is a valuable alternative to TD-DFT for properties related to the excited-state density and not only for transition energies and oscillator strengths.
Collapse
Affiliation(s)
- Iryna Knysh
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | | | - Ivan Duchemin
- Université Grenoble Alpes, CEA, IRIG-MEM-L Sim, 38054 Grenoble, France
| | - Xavier Blase
- Université Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
6
|
Asthana A, Kumar A, Abraham V, Grimsley H, Zhang Y, Cincio L, Tretiak S, Dub PA, Economou SE, Barnes E, Mayhall NJ. Quantum self-consistent equation-of-motion method for computing molecular excitation energies, ionization potentials, and electron affinities on a quantum computer. Chem Sci 2023; 14:2405-2418. [PMID: 36873839 PMCID: PMC9977410 DOI: 10.1039/d2sc05371c] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/26/2023] [Indexed: 01/30/2023] Open
Abstract
Near-term quantum computers are expected to facilitate material and chemical research through accurate molecular simulations. Several developments have already shown that accurate ground-state energies for small molecules can be evaluated on present-day quantum devices. Although electronically excited states play a vital role in chemical processes and applications, the search for a reliable and practical approach for routine excited-state calculations on near-term quantum devices is ongoing. Inspired by excited-state methods developed for the unitary coupled-cluster theory in quantum chemistry, we present an equation-of-motion-based method to compute excitation energies following the variational quantum eigensolver algorithm for ground-state calculations on a quantum computer. We perform numerical simulations on H2, H4, H2O, and LiH molecules to test our quantum self-consistent equation-of-motion (q-sc-EOM) method and compare it to other current state-of-the-art methods. q-sc-EOM makes use of self-consistent operators to satisfy the vacuum annihilation condition, a critical property for accurate calculations. It provides real and size-intensive energy differences corresponding to vertical excitation energies, ionization potentials and electron affinities. We also find that q-sc-EOM is more suitable for implementation on NISQ devices as it is expected to be more resilient to noise compared with the currently available methods.
Collapse
Affiliation(s)
- Ayush Asthana
- Department of Chemistry, Virginia Tech Blacksburg 24061 VA USA
- Virginia Tech Center for Quantum Information Science and Engineering Blacksburg 24061 VA USA
| | - Ashutosh Kumar
- Theoretical Division, Los Alamos National Laboratory Los Alamos 87545 NM USA
| | - Vibin Abraham
- Department of Chemistry, University of Michigan Ann Arbor 48109 MI USA
| | - Harper Grimsley
- Department of Chemistry, Virginia Tech Blacksburg 24061 VA USA
- Virginia Tech Center for Quantum Information Science and Engineering Blacksburg 24061 VA USA
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory Los Alamos 87545 NM USA
| | - Lukasz Cincio
- Theoretical Division, Los Alamos National Laboratory Los Alamos 87545 NM USA
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory Los Alamos 87545 NM USA
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory Los Alamos 87545 NM USA
| | - Pavel A Dub
- Chemistry Division, Los Alamos National Laboratory Los Alamos 87545 NM USA
| | - Sophia E Economou
- Department of Physics, Virginia Tech Blacksburg 24061 VA USA
- Virginia Tech Center for Quantum Information Science and Engineering Blacksburg 24061 VA USA
| | - Edwin Barnes
- Department of Physics, Virginia Tech Blacksburg 24061 VA USA
- Virginia Tech Center for Quantum Information Science and Engineering Blacksburg 24061 VA USA
| | - Nicholas J Mayhall
- Department of Chemistry, Virginia Tech Blacksburg 24061 VA USA
- Virginia Tech Center for Quantum Information Science and Engineering Blacksburg 24061 VA USA
| |
Collapse
|
7
|
Damour Y, Quintero-Monsebaiz R, Caffarel M, Jacquemin D, Kossoski F, Scemama A, Loos PF. Ground- and Excited-State Dipole Moments and Oscillator Strengths of Full Configuration Interaction Quality. J Chem Theory Comput 2023; 19:221-234. [PMID: 36548519 DOI: 10.1021/acs.jctc.2c01111] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report ground- and excited-state dipole moments and oscillator strengths (computed in different "gauges" or representations) of full configuration interaction (FCI) quality using the selected configuration interaction method known as Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI). Thanks to a set encompassing 35 ground- and excited-state properties computed in 11 small molecules, the present near-FCI estimates allow us to assess the accuracy of high-order coupled-cluster (CC) calculations including up to quadruple excitations. In particular, we show that incrementing the excitation degree of the CC expansion (from CC with singles and doubles (CCSD) to CC with singles, doubles, and triples (CCSDT) or from CCSDT to CC with singles, doubles, triples, and quadruples (CCSDTQ)) reduces the average error with respect to the near-FCI reference values by approximately 1 order of magnitude.
Collapse
Affiliation(s)
- Yann Damour
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Raúl Quintero-Monsebaiz
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Michel Caffarel
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.,Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
8
|
Liu J, Matthews DA, Cheng L. Quadratic Unitary Coupled-Cluster Singles and Doubles Scheme: Efficient Implementation, Benchmark Study, and Formulation of an Extended Version. J Chem Theory Comput 2022; 18:2281-2291. [PMID: 35312299 DOI: 10.1021/acs.jctc.1c01210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient implementation of the quadratic unitary coupled-cluster singles and doubles (qUCCSD) scheme for calculations of electronic ground and excited states using an unrestricted molecular spin-orbital formulation and an efficient tensor contraction library is reported. The accuracy of the qUCCSD scheme and the efficiency of the present implementation are demonstrated using extensive benchmark calculations of excitation energies and an application to S0 → S1 vertical excitation energies for cis- and trans-4a,4b-dihydrotriphenylene. The qUCCSD scheme has been shown to provide improved excitation energies compared with the UCC3 scheme formulated based on perturbation theory. A UCC truncation scheme that can provide excitation energies correct through the fourth order is also presented to further improve the accuracy of the qUCCSD scheme.
Collapse
Affiliation(s)
- Junzi Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Devin A Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
Hodecker M, Dempwolff AL, Schirmer J, Dreuw A. Theoretical analysis and comparison of unitary coupled-cluster and algebraic-diagrammatic construction methods for ionization. J Chem Phys 2022; 156:074104. [DOI: 10.1063/5.0070967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Manuel Hodecker
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Adrian L. Dempwolff
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Jochen Schirmer
- Theoretical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Sugisaki K, Kato T, Minato Y, Okuwaki K, Mochizuki Y. Variational quantum eigensolver simulations with the multireference unitary coupled cluster ansatz: a case study of the C2v quasi-reaction pathway of beryllium insertion to H 2 molecule. Phys Chem Chem Phys 2022; 24:8439-8452. [DOI: 10.1039/d1cp04318h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Variational quantum eigensolver (VQE)-based quantum chemical calculations have been extensively studied as a computational model using noisy intermediate-scale quantum devices. VQE uses a parametrized quantum circuit defined through an “ansatz”...
Collapse
|
11
|
Liu J, Cheng L. Unitary coupled-cluster based self-consistent polarization propagator theory: A quadratic unitary coupled-cluster singles and doubles scheme. J Chem Phys 2021; 155:174102. [PMID: 34742195 DOI: 10.1063/5.0062090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The development of a quadratic unitary coupled-cluster singles and doubles (qUCCSD) based self-consistent polarization propagator method is reported. We present a simple strategy for truncating the commutator expansion of the unitary version of coupled-cluster transformed Hamiltonian H̄. The qUCCSD method for the electronic ground state includes up to double commutators for the amplitude equations and up to cubic commutators for the energy expression. The qUCCSD excited-state eigenvalue equations include up to double commutators for the singles-singles block of H̄, single commutators for the singles-doubles and doubles-singles blocks, and the bare Hamiltonian for the doubles-doubles block. Benchmark qUCCSD calculations of the ground-state properties and excitation energies for representative molecules demonstrate significant improvement of the accuracy and robustness over the previous UCC3 scheme derived using Møller-Plesset perturbation theory.
Collapse
Affiliation(s)
- Junzi Liu
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
12
|
Fan Y, Liu J, Li Z, Yang J. Equation-of-Motion Theory to Calculate Accurate Band Structures with a Quantum Computer. J Phys Chem Lett 2021; 12:8833-8840. [PMID: 34492184 DOI: 10.1021/acs.jpclett.1c02153] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Band structure is a cornerstone to understand the electronic properties of materials. Accurate band structure calculations using a high-level quantum chemistry theory can be computationally very expensive. It is promising to speed up such calculations with a quantum computer. In this study, we present a quantum algorithm for band structure calculations based on the equation-of-motion (EOM) theory. First, we introduce a new variational quantum eigensolver algorithm named ADAPT-C for ground-state quantum simulation of solids, where the wave function is built adaptively from a complete set of anti-Hermitian operators. Then, on top of the ADAPT-C ground state, quasiparticle energies and the band structure can be calculated using the EOM theory in a quantum-subspace-expansion style, where the projected excitation operators guarantee that the killer condition is satisfied. As a proof of principle, such an EOM-ADAPT-C protocol is used to calculate the band structures of silicon and diamond using a quantum computer simulator.
Collapse
Affiliation(s)
- Yi Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenyu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
13
|
Thielen SM, Hodecker M, Piazolo J, Rehn DR, Dreuw A. Unitary coupled-cluster approach for the calculation of core-excited states and x-ray absorption spectra. J Chem Phys 2021; 154:154108. [PMID: 33887935 DOI: 10.1063/5.0047134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we present the core-valence separation (CVS) approximation applied to unitary coupled-cluster (UCC) theory for the calculation of core-excited states and the simulation of x-ray absorption spectroscopy (XAS). Excitation energies and oscillator strengths of small- to medium-sized organic molecules have been computed using the second-order and extended second-order UCC schemes (CVS-UCC2 and CVS-UCC2-x) as well as the third-order scheme (CVS-UCC3). All results are compared to the corresponding algebraic-diagrammatic construction methods and experimental data. The agreement between CVS-UCC and experimental data demonstrates its potential as a new approach for the calculation of XAS.
Collapse
Affiliation(s)
- Sebastian M Thielen
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
| | - Manuel Hodecker
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
| | - Julia Piazolo
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
| | - Dirk R Rehn
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
| |
Collapse
|
14
|
Sarkar R, Boggio-Pasqua M, Loos PF, Jacquemin D. Benchmarking TD-DFT and Wave Function Methods for Oscillator Strengths and Excited-State Dipole Moments. J Chem Theory Comput 2021; 17:1117-1132. [DOI: 10.1021/acs.jctc.0c01228] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
15
|
Misiewicz JP, Turney JM, Schaefer HF, Sokolov AY. Assessing the orbital-optimized unitary Ansatz for density cumulant theory. J Chem Phys 2020; 153:244102. [PMID: 33380073 DOI: 10.1063/5.0036512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The previously proposed Ansatz for density cumulant theory that combines orbital-optimization and a parameterization of the 2-electron reduced density matrix cumulant in terms of unitary coupled cluster amplitudes (OUDCT) is carefully examined. Formally, we elucidate the relationship between OUDCT and orbital-optimized unitary coupled cluster theory and show the existence of near-zero denominators in the stationarity conditions for both the exact and some approximate OUDCT methods. We implement methods of the OUDCT Ansatz restricted to double excitations for numerical study, up to the fifth commutator in the Baker-Campbell-Hausdorff expansion. We find that methods derived from the Ansatz beyond the previously known ODC-12 method tend to be less accurate for equilibrium properties and less reliable when attempting to describe H2 dissociation. New developments are needed to formulate more accurate density cumulant theory variants.
Collapse
Affiliation(s)
- Jonathon P Misiewicz
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Justin M Turney
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|