1
|
Keller BG, Bolhuis PG. Dynamical Reweighting for Biased Rare Event Simulations. Annu Rev Phys Chem 2024; 75:137-162. [PMID: 38941527 DOI: 10.1146/annurev-physchem-083122-124538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Dynamical reweighting techniques aim to recover the correct molecular dynamics from a simulation at a modified potential energy surface. They are important for unbiasing enhanced sampling simulations of molecular rare events. Here, we review the theoretical frameworks of dynamical reweighting for modified potentials. Based on an overview of kinetic models with increasing level of detail, we discuss techniques to reweight two-state dynamics, multistate dynamics, and path integrals. We explore the natural link to transition path sampling and how the effect of nonequilibrium forces can be reweighted. We end by providing an outlook on how dynamical reweighting integrates with techniques for optimizing collective variables and with modern potential energy surfaces.
Collapse
Affiliation(s)
- Bettina G Keller
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany;
| | - Peter G Bolhuis
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Linker S, Schellhaas C, Kamenik AS, Veldhuizen MM, Waibl F, Roth HJ, Fouché M, Rodde S, Riniker S. Lessons for Oral Bioavailability: How Conformationally Flexible Cyclic Peptides Enter and Cross Lipid Membranes. J Med Chem 2023; 66:2773-2788. [PMID: 36762908 PMCID: PMC9969412 DOI: 10.1021/acs.jmedchem.2c01837] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 02/11/2023]
Abstract
Cyclic peptides extend the druggable target space due to their size, flexibility, and hydrogen-bonding capacity. However, these properties impact also their passive membrane permeability. As the "journey" through membranes cannot be monitored experimentally, little is known about the underlying process, which hinders rational design. Here, we use molecular simulations to uncover how cyclic peptides permeate a membrane. We show that side chains can act as "molecular anchors", establishing the first contact with the membrane and enabling insertion. Once inside, the peptides are positioned between headgroups and lipid tails─a unique polar/apolar interface. Only one of two distinct orientations at this interface allows for the formation of the permeable "closed" conformation. In the closed conformation, the peptide crosses to the lower leaflet via another "anchoring" and flipping mechanism. Our findings provide atomistic insights into the permeation process of flexible cyclic peptides and reveal design considerations for each step of the process.
Collapse
Affiliation(s)
- Stephanie
M. Linker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Christian Schellhaas
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Anna S. Kamenik
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Mac M. Veldhuizen
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Franz Waibl
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Hans-Jörg Roth
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Marianne Fouché
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Stephane Rodde
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Sereina Riniker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Palacio-Rodriguez K, Vroylandt H, Stelzl LS, Pietrucci F, Hummer G, Cossio P. Transition Rates and Efficiency of Collective Variables from Time-Dependent Biased Simulations. J Phys Chem Lett 2022; 13:7490-7496. [PMID: 35939819 DOI: 10.1021/acs.jpclett.2c01807] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Simulations with adaptive time-dependent bias enable an efficient exploration of the conformational space of a system. However, the dynamic information is altered by the bias. Infrequent metadynamics recovers the transition rate of crossing a barrier, if the collective variables are ideal and there is no bias deposition near the transition state. Unfortunately, these conditions are not always fulfilled. To overcome these limitations, and inspired by single-molecule force spectroscopy, we use Kramers' theory for calculating the barrier-crossing rate when a time-dependent bias is added to the system. We assess the efficiency of collective variables parameter by measuring how efficiently the bias accelerates the transitions. We present approximate analytical expressions of the survival probability, reproducing the barrier-crossing time statistics and enabling the extraction of the unbiased transition rate even for challenging cases. We explore the limits of our method and provide convergence criteria to assess its validity.
Collapse
Affiliation(s)
- Karen Palacio-Rodriguez
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, 75005 Paris, France
- Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia, 050010 Medellín, Colombia
| | - Hadrien Vroylandt
- Institut des sciences du calcul et des données, Sorbonne Université, 75005 Paris, France
| | - Lukas S Stelzl
- Faculty of Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- KOMET 1, Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
- Institute of Molecular Biology, 55128 Mainz, Germany
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Fabio Pietrucci
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, 75005 Paris, France
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
- Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Pilar Cossio
- Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia, 050010 Medellín, Colombia
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
- Center for Computational Mathematics, Flatiron Institute, 10010 New York, United States
- Center for Computational Biology, Flatiron Institute, 10010 New York, United States
| |
Collapse
|
4
|
Kamenik AS, Linker SM, Riniker S. Enhanced sampling without borders: on global biasing functions and how to reweight them. Phys Chem Chem Phys 2022; 24:1225-1236. [PMID: 34935813 PMCID: PMC8768491 DOI: 10.1039/d1cp04809k] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Molecular dynamics (MD) simulations are a powerful tool to follow the time evolution of biomolecular motions in atomistic resolution. However, the high computational demand of these simulations limits the timescales of motions that can be observed. To resolve this issue, so called enhanced sampling techniques are developed, which extend conventional MD algorithms to speed up the simulation process. Here, we focus on techniques that apply global biasing functions. We provide a broad overview of established enhanced sampling methods and promising new advances. As the ultimate goal is to retrieve unbiased information from biased ensembles, we also discuss benefits and limitations of common reweighting schemes. In addition to concisely summarizing critical assumptions and implications, we highlight the general application opportunities as well as uncertainties of global enhanced sampling.
Collapse
Affiliation(s)
- Anna S Kamenik
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Stephanie M Linker
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| |
Collapse
|