1
|
Hoang Ngoc Minh T, Kim J, Pireddu G, Chubak I, Nair S, Rotenberg B. Electrical noise in electrolytes: a theoretical perspective. Faraday Discuss 2023; 246:198-224. [PMID: 37409620 DOI: 10.1039/d3fd00026e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Seemingly unrelated experiments such as electrolyte transport through nanotubes, nano-scale electrochemistry, NMR relaxometry and surface force balance measurements, all probe electrical fluctuations: of the electric current, the charge and polarization, the field gradient (for quadrupolar nuclei) and the coupled mass/charge densities. The fluctuations of such various observables arise from the same underlying microscopic dynamics of the ions and solvent molecules. In principle, the relevant length and time scales of these dynamics are encoded in the dynamic structure factors. However, modelling the latter for frequencies and wavevectors spanning many orders of magnitude remains a great challenge to interpret the experiments in terms of physical processes such as solvation dynamics, diffusion, electrostatic and hydrodynamic interactions between ions, interactions with solid surfaces, etc. Here, we highlight the central role of the charge-charge dynamic structure factor in the fluctuations of electrical observables in electrolytes and offer a unifying perspective over a variety of complementary experiments. We further analyze this quantity in the special case of an aqueous NaCl electrolyte, using simulations with explicit ions and an explicit or implicit solvent. We discuss the ability of the standard Poisson-Nernst-Planck theory to capture the simulation results, and how the predictions can be improved. We finally discuss the contributions of ions and water to the total charge fluctuations. This work illustrates an ongoing effort towards a comprehensive understanding of electrical fluctuations in bulk and confined electrolytes, in order to enable experimentalists to decipher the microscopic properties encoded in the measured electrical noise.
Collapse
Affiliation(s)
- Thê Hoang Ngoc Minh
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Jeongmin Kim
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Giovanni Pireddu
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Iurii Chubak
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Swetha Nair
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
2
|
Ma D, Zhang B, Hu X. A Novel Strategy of Combined Pulsed Electro-Oxidation and Electrolysis for Degradation of Sulfadiazine. Molecules 2023; 28:molecules28083620. [PMID: 37110855 PMCID: PMC10142080 DOI: 10.3390/molecules28083620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
A combination of the peroxymonosulfate (PMS) electro-activation process and the electro-oxidation process driven by a pulsed electric field (PEF) was used to degrade sulfadiazine (SND) wastewater. Mass transfer is the limiting step of electrochemical processes. The PEF could enhance mass transfer efficiency by reducing the polarization effect and increasing the instantaneous limiting current compared with the constant electric field (CEF), which could benefit the electro-generation of active radicals. The degradation rate of SND after 2 h was 73.08%. The experiments investigated the effects of operating parameters of pulsed power supply, PMS dosage, pH value and electrode inter distance on the degradation rate of SND. The predicted response value of single-factor performance experiments was obtained as 72.26% after 2 h, which was basically consistent with the experimental value. According to the quenching experiments and EPR tests, both SO4•- and •OH were present in the electrochemical processes. The generation of active species were significantly greater in the PEF system than that in the CEF system. Moreover, four kinds of intermediate products were detected during the degradation by LC-MS. This paper presents a new aspect for electrochemical degradation of sulfonamide antibiotics.
Collapse
Affiliation(s)
- Dong Ma
- Department of Environmental Engineering, School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Bo Zhang
- Department of Environmental Engineering, School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xiaomin Hu
- Department of Environmental Engineering, School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
3
|
Takahashi K, Nakano H, Sato H. Accelerated constant-voltage quantum mechanical/molecular mechanical method for molecular systems at electrochemical interfaces. J Chem Phys 2022; 157:234107. [PMID: 36550044 DOI: 10.1063/5.0128358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The structure and electronic properties of a molecule at an electrochemical interface are changed by interactions with the electrode surface and the electrolyte solution, which can be significantly modulated by an applied voltage. We present an efficient self-consistent quantum mechanics/molecular mechanics (QM/MM) approach to study a physisorbed molecule at a metal electrode-electrolyte interface under the constant-voltage condition. The approach employs a classical polarizable double electrode model, which enables us to study the QM/MM system in the constant-voltage ensemble. A mean-field embedding approximation is further introduced in order to overcome the difficulties associated with statistical sampling of the electrolyte configurations. The results of applying the method to a test system indicate that the adsorbed molecule is no less or slightly more polarized at the interface than in the bulk electrolyte solution. The geometry of the horizontally adsorbed molecule is modulated by their electrostatic interactions with the polarizable electrode surfaces and also the interactions with cations attracted toward the interface when the adsorbate is reduced. We also demonstrate that the approach can be used to quantitatively evaluate the reorganization energy of a one electron reduction reaction of a molecule in an electrochemical cell.
Collapse
Affiliation(s)
- Ken Takahashi
- Department of Molecular Engineering, Kyoto University, Kyoto Daigaku Katsura, Kyoto 615-8246, Japan
| | - Hiroshi Nakano
- CD-FMat, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba Central 2, Tsukuba, Ibaraki 305-8568, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Kyoto Daigaku Katsura, Kyoto 615-8246, Japan
| |
Collapse
|
4
|
Takahashi K, Nakano H, Sato H. Unified polarizable electrode models for open and closed circuits: Revisiting the effects of electrode polarization and different circuit conditions on electrode-electrolyte interfaces. J Chem Phys 2022; 157:014111. [DOI: 10.1063/5.0093095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A precise understanding of the interfacial structure and dynamics is essential for the optimal design of various electrochemical devices. Herein, we propose a method for classical molecular dynamics simulations to deal with electrochemical interfaces with polarizable electrodes under the open circuit condition. Less attention has been paid to electrochemical circuit conditions in computation despite being often essential for a proper assessment, especially comparison between different models. The present method is based on the chemical potential equalization principle, as is a method developed previously to deal with systems under the closed circuit condition. These two methods can be interconverted through the Legendre transformation, so that the difference in the circuit conditions can be compared on the same footing. Furthermore, the electrode polarization effect can be correctly studied by comparing the present method with the conventional simulations with the electrodes represented by fixed charges, since both of the methods describe systems under the open circuit condition. The method is applied to a parallel-plate capacitor composed of platinum electrodes and an aqueous electrolyte solution. The electrode polarization effects have an impact on the interfacial structure of the electrolyte solution. We found that the difference in the circuit conditions significantly affects the dynamics of the electrolyte solution. The electric field at the charged electrode surface is poorly screened by the nonequilibrium solution structure in the open circuit condition, which accelerates the motion of the electrolyte solution.
Collapse
Affiliation(s)
| | | | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University - Katsura Campus, Japan
| |
Collapse
|
5
|
Yamada A. Classical electronic and molecular dynamics simulation for optical response of metal system. J Chem Phys 2021; 155:174118. [PMID: 34742192 DOI: 10.1063/5.0067144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An extended molecular dynamics simulation that incorporates classical free electron dynamics in the framework of the force-field model has been developed to enable us to describe the optical response of metal materials under the visible light electric field. In the simulation, dynamical atomic point charges follow equations of motion of classical free electrons that include Coulomb interactions with the oscillating field and surrounding atomic sites and collision effects from nearby electrons and ions. This scheme allows us to simulate an interacting system of metals with molecules using an ordinary polarizable force-field and preserves energy conservation in the case without applying an external electric field. As the first applications, we show that the presented simulation accurately reproduces (i) the classical image potential in a metal-charge interaction system and (ii) the dielectric function of bulk metal. We also demonstrate (iii) calculations of absorption spectra of metal nano-particles with and without a water solvent at room temperature, showing reasonable red-shift by the solvent effect, and (iv) plasmon resonant excitation of the metal nano-particle in solution under the visible light pulse and succeeding energy relaxation of the absorbed light energy from electrons to atoms on the metal and to the water solvent. Our attempt thus opens the possibility to expand the force-field based molecular dynamics simulation to an alternative tool for optical-related fields.
Collapse
Affiliation(s)
- Atsushi Yamada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
6
|
Abstract
Many key industrial processes, from electricity production, conversion, and storage to electrocatalysis or electrochemistry in general, rely on physical mechanisms occurring at the interface between a metallic electrode and an electrolyte solution, summarized by the concept of an electric double layer, with the accumulation/depletion of electrons on the metal side and of ions on the liquid side. While electrostatic interactions play an essential role in the structure, thermodynamics, dynamics, and reactivity of electrode-electrolyte interfaces, these properties also crucially depend on the nature of the ions and solvent, as well as that of the metal itself. Such interfaces pose many challenges for modeling because they are a place where quantum chemistry meets statistical physics. In the present review, we explore the recent advances in the description and understanding of electrode-electrolyte interfaces with classical molecular simulations, with a focus on planar interfaces and solvent-based liquids, from pure solvent to water-in-salt electrolytes.
Collapse
Affiliation(s)
- Laura Scalfi
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, F-75005 Paris, France
| | - Mathieu Salanne
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| | - Benjamin Rotenberg
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
7
|
Oshiki J, Nakano H, Sato H. Controlling potential difference between electrodes based on self-consistent-charge density functional tight binding. J Chem Phys 2021; 154:144107. [PMID: 33858148 DOI: 10.1063/5.0047992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A proper understanding and description of the electronic response of the electrode surfaces in electrochemical systems are quite important because the interactions between the electrode surface and electrolyte give rise to unique and useful interfacial properties. Atomistic modeling of the electrodes requires not only an accurate description of the electronic response under a constant-potential condition but also computational efficiency in order to deal with systems large enough to investigate the interfacial electrolyte structures. We thus develop a self-consistent-charge density functional tight binding based method to model a pair of electrodes in electrochemical cells under the constant-potential condition. The method is more efficient than the (ab initio) density functional theory calculations so that it can treat systems as large as those studied in classical atomistic simulations. It can also describe the electronic response of electrodes quantum mechanically and more accurately than the classical counterparts. The constant-potential condition is introduced through a Legendre transformation of the electronic energy with respect to the difference in the number of electrons in the two electrodes and their electrochemical potential difference, through which the Kohn-Sham equations for each electrode are variationally derived. The method is applied to platinum electrodes faced parallel to each other under an applied voltage. The electronic response to the voltage and a charged particle is compared with the result of a classical constant-potential method based on the chemical potential equalization principle.
Collapse
Affiliation(s)
- Jun Oshiki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroshi Nakano
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|