1
|
Schleker PPM, Grosu C, Paulus M, Jakes P, Schlögl R, Eichel RA, Scheurer C, Granwehr J. Electrolyte contact changes nano-Li 4Ti 5O 12 bulk properties via surface polarons. Commun Chem 2023; 6:113. [PMID: 37286703 DOI: 10.1038/s42004-023-00913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
It is of general interest to combine the faradaic processes based high energy density of a battery with the non-faradaic processes based high power density of a capacitor in one cell. Surface area and functional groups of electrode materials strongly affect these properties. For the anode material Li4Ti5O12 (LTO), we suggest a polaron based mechanism that influences Li ion uptake and mobility. Here we show electrolytes containing a lithium salt induce an observable change in the bulk NMR relaxation properties of LTO nano particles. The longitudinal 7Li NMR relaxation time of bulk LTO can change by almost an order of magnitude and, therefore, reacts very sensitively to the cation and its concentration in the surrounding electrolyte. The reversible effect is largely independent of the used anions and of potential anion decomposition products. It is concluded that lithium salt containing electrolytes increase the mobility of surface polarons. These polarons and additional lithium cations from the electrolyte can now diffuse through the bulk, induce the observed enhanced relaxation rate and enable the non-faradaic process. This picture of a Li+ ion equilibrium between electrolyte and solid may help with improving the charging properties of electrode materials.
Collapse
Affiliation(s)
- P Philipp M Schleker
- Institut für Grundlagen der Elektrochemie IEK-9, Forschungszentrum Jülich, Wilhelm-Johnen Straße, 52425, Jülich, Germany.
| | - Cristina Grosu
- Institut für Grundlagen der Elektrochemie IEK-9, Forschungszentrum Jülich, Wilhelm-Johnen Straße, 52425, Jülich, Germany
- Institut für Chemie, Technische Universität München, 85748, Garching b, München, Germany
| | - Marc Paulus
- Institut für Grundlagen der Elektrochemie IEK-9, Forschungszentrum Jülich, Wilhelm-Johnen Straße, 52425, Jülich, Germany
- Institut für Physikalische Chemie (IPC), RWTH Aachen University, D-52074, Aachen, Germany
| | - Peter Jakes
- Institut für Grundlagen der Elektrochemie IEK-9, Forschungszentrum Jülich, Wilhelm-Johnen Straße, 52425, Jülich, Germany
- Institut für Physikalische Chemie (IPC), RWTH Aachen University, D-52074, Aachen, Germany
| | - Robert Schlögl
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195, Berlin, Germany
| | - Rüdiger-A Eichel
- Institut für Grundlagen der Elektrochemie IEK-9, Forschungszentrum Jülich, Wilhelm-Johnen Straße, 52425, Jülich, Germany
- Institut für Physikalische Chemie (IPC), RWTH Aachen University, D-52074, Aachen, Germany
| | - Christoph Scheurer
- Institut für Grundlagen der Elektrochemie IEK-9, Forschungszentrum Jülich, Wilhelm-Johnen Straße, 52425, Jülich, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195, Berlin, Germany
| | - Josef Granwehr
- Institut für Grundlagen der Elektrochemie IEK-9, Forschungszentrum Jülich, Wilhelm-Johnen Straße, 52425, Jülich, Germany
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, D-52074, Aachen, Germany
| |
Collapse
|
2
|
How the Sodium Cations in Anode Affect the Performance of a Lithium-ion Battery. BATTERIES-BASEL 2022. [DOI: 10.3390/batteries8080078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Large cations such as potassium ion (K+) and sodium ion (Na+) could be introduced into the lithium-ion (Li-ion) battery system during material synthesis or battery assembly. However, the effect of these cations on charge storage or electrochemical performance has not been fully understood. In this study, sodium ion was taken as an example and introduced into the lithium titanium oxide (LTO) anode through the carboxymethyl cellulose (CMC) binder. After the charge/discharge cycles, these ions doped into the LTO lattice and improved both the lithium-ion diffusivity and the electronic conductivity of the anode. The sodium ion’s high concentration (>12.9%), however, resulted in internal doping of Na+ into the LTO lattice, which retarded the transfer of lithium ions due to repulsion and physical blocking. The systematic study presented here shows that large cations with an appropriate concentration in the electrode would be beneficial to the electrochemical performance of the Li-ion battery.
Collapse
|