1
|
Li C, Murphy EA, Skala SJ, Delaney KT, Hawker CJ, Shell MS, Fredrickson GH. Accelerated Prediction of Phase Behavior for Block Copolymer Libraries Using a Molecularly Informed Field Theory. J Am Chem Soc 2024; 146:29751-29758. [PMID: 39420443 DOI: 10.1021/jacs.4c11258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Solution formulations involving polymers are the basis for a wide range of products spanning consumer care, therapeutics, lubricants, adhesives, and coatings. These multicomponent systems typically show rich self-assembly and phase behavior that are sensitive to even small changes in chemistry and composition. Longstanding computational efforts have sought techniques for predictive modeling of formulation structure and thermodynamics without experimental guidance, but the challenges of addressing the long time scales and large length scales of self-assembly while maintaining chemical specificity have thwarted the emergence of general approaches. As a consequence, current formulation design remains largely Edisonian. Here, we present a multiscale modeling approach that accurately predicts, without any experimental input, the complete temperature-concentration phase diagram of model diblock polymers in solution, as established postprediction through small-angle X-ray scattering. The methodology employs a strategy whereby atomistic molecular dynamics simulations is used to parametrize coarse-grained field-theoretic models; simulations of the latter then easily surmount long equilibration time scales and enable rigorous determination of solution structures and phase behavior. This systematic and predictive approach, accelerated by access to well-defined block copolymers, has the potential to expedite in silico screening of novel formulations to significantly reduce trial-and-error experimental design and to guide selection of components and compositions across a vast range of applications.
Collapse
Affiliation(s)
- Charles Li
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Elizabeth A Murphy
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Stephen J Skala
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kris T Delaney
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Glenn H Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
2
|
Nguyen MVT, Sherck N, Köhler S, Schreiner E, Gupta R, Fredrickson GH, Shell MS. Multiscale Computational Study of Cellulose Acetate-Water Miscibility: Insights from Molecularly Informed Field-Theoretic Modeling. Biomacromolecules 2024; 25:5809-5818. [PMID: 39113404 DOI: 10.1021/acs.biomac.4c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Cellulose acetate (CA), a prominent water-soluble derivative of cellulose, is a promising biodegradable ingredient that has applications in films, membranes, fibers, drug delivery, and more. In this work, we present a molecularly informed field-theoretic model for CA to explore its phase behavior in aqueous solutions. By integrating atomistic details into large-scale field-theoretic simulations via the relative entropy coarse-graining framework, our approach enables efficient calculations of CA's miscibility window as a function of the degree of substitution (DS) of cellulose hydroxyl groups with acetate side chains. This allows us to capture the intricate phase behavior of CA, particularly its unique miscibility at intermediate substitution, without relying on experimental input. Additionally, the model directly probes CA solution behavior specific to the relative DS at C2, C3, and C6 alcohol sites, providing insights for the rational design of water-soluble CA for diverse applications. This work demonstrates a promising integration of molecularly informed field theories, complementing wet-lab experimentation, for engineering the next-generation polymeric materials with precisely tailored properties.
Collapse
Affiliation(s)
- My V T Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | | | | | | | - Rohini Gupta
- California Research Alliance (CARA) by BASF, Berkeley, California 94720, United States
| | - Glenn H Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
3
|
Ye BB, Chen S, Wang ZG. GCMe: Efficient Implementation of the Gaussian Core Model with Smeared Electrostatic Interactions for Molecular Dynamics Simulations of Soft Matter Systems. J Chem Theory Comput 2024; 20:6870-6880. [PMID: 39013595 PMCID: PMC11325544 DOI: 10.1021/acs.jctc.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
In recent years, molecular dynamics (MD) simulations have emerged as an essential tool for understanding the structure, dynamics, and phase behavior of charged soft matter systems. To explore phenomena across greater length and time scales in MD simulations, molecules are often coarse-grained for better computational performance. However, commonly used force fields represent particles as hard-core interaction centers with point charges, which often overemphasizes the packing effect and short-range electrostatics, especially in systems with bulky deformable organic molecules and systems with strong coarse-graining. This underscores the need for an efficient soft-core model to physically capture the effective interactions between coarse-grained particles. To this end, we implement a soft-core model uniting the Gaussian core model with smeared electrostatic interactions that is phenomenologically equivalent to recent theoretical models. We first parametrize it generically using water as the model solvent. Then, we benchmark its performance in the OpenMM toolkit for different boundary conditions to highlight a computational speedup of up to 34 × compared to commonly used force fields and existing implementations. Finally, we demonstrate its utility by investigating how boundary polarizability affects the adsorption behavior of a polyelectrolyte solution on perfectly conducting and nonmetal boundaries.
Collapse
Affiliation(s)
- Benjamin Bobin Ye
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Shensheng Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Izvekov S, Kroonblawd MP, Larentzos JP, Brennan JK, Rice BM. Maximum Entropy Theory of Multiscale Coarse-Graining via Matching Thermodynamic Forces: Application to a Molecular Crystal (TATB). J Phys Chem B 2024. [PMID: 38489758 DOI: 10.1021/acs.jpcb.3c07078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The MSCG/FM (multiscale coarse-graining via force-matching) approach is an efficient supervised machine learning method to develop microscopically informed coarse-grained (CG) models. We present a theory based on the principle of maximum entropy (PME) enveloping the existing MSCG/FM approaches. This theory views the MSCG/FM method as a special case of matching the thermodynamic forces from the extended ensemble described by the set of thermodynamic (relevant) system coordinates. This set may include CG coordinates, the stress tensor, applied external fields, and so forth, and may be characterized by nonequilibrium conditions. Following the presentation of the theory, we discuss the consistent matching of both bonded and nonbonded interactions. The proposed PME formulation is used as a starting point to extend the MSCG/FM method to the constant strain ensemble, which together with the explicit matching of the bonded forces is better suited for coarse-graining anisotropic media at a submolecular resolution. The theory is demonstrated by performing the fine coarse-graining of crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), a well-known insensitive molecular energetic material, which exhibits highly anisotropic mechanical properties.
Collapse
Affiliation(s)
- Sergei Izvekov
- U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - James P Larentzos
- U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - John K Brennan
- U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Betsy M Rice
- U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| |
Collapse
|
5
|
Lesniewski MC, Noid WG. Insight into the Density-Dependence of Pair Potentials for Predictive Coarse-Grained Models. J Phys Chem B 2024; 128:1298-1316. [PMID: 38271676 DOI: 10.1021/acs.jpcb.3c06890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We investigate the temperature- and density-dependence of effective pair potentials for 1-site coarse-grained (CG) models of two industrial solvents, 1,4-dioxane and tetrahydrofuran. We observe that the calculated pair potentials are much more sensitive to density than to temperature. The generalized-Yvon-Born-Green framework reveals that this striking density-dependence reflects corresponding variations in the many-body correlations that determine the environment-mediated indirect contribution to the pair mean force. Moreover, we demonstrate, perhaps surprisingly, that this density-dependence is not important for accurately modeling the intermolecular structure. Accordingly, we adopt a density-independent interaction potential and transfer the density-dependence of the calculated pair potentials into a configuration-independent volume potential. Furthermore, we develop a single global potential that accurately models the intermolecular structure and pressure-volume equation of state across a very wide range of liquid state points. Consequently, this work provides fundamental insight into the density-dependence of effective pair potentials and also provides a significant step toward developing predictive CG models for efficiently modeling industrial solvents.
Collapse
Affiliation(s)
- Maria C Lesniewski
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
6
|
Pretti E, Shell MS. Mapping the configurational landscape and aggregation phase behavior of the tau protein fragment PHF6. Proc Natl Acad Sci U S A 2023; 120:e2309995120. [PMID: 37983502 PMCID: PMC10691331 DOI: 10.1073/pnas.2309995120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
The PHF6 (Val-Gln-Ile-Val-Tyr-Lys) motif, found in all isoforms of the microtubule-associated protein tau, forms an integral part of ordered cores of amyloid fibrils formed in tauopathies and is thought to play a fundamental role in tau aggregation. Because PHF6 as an isolated hexapeptide assembles into ordered fibrils on its own, it is investigated as a minimal model for insight into the initial stages of aggregation of larger tau fragments. Even for this small peptide, however, the large length and time scales associated with fibrillization pose challenges for simulation studies of its dynamic assembly, equilibrium configurational landscape, and phase behavior. Here, we develop an accurate, bottom-up coarse-grained model of PHF6 for large-scale simulations of its aggregation, which we use to uncover molecular interactions and thermodynamic driving forces governing its assembly. The model, not trained on any explicit information about fibrillar structure, predicts coexistence of formed fibrils with monomers in solution, and we calculate a putative equilibrium phase diagram in concentration-temperature space. We also characterize the configurational and free energetic landscape of PHF6 oligomers. Importantly, we demonstrate with a model of heparin that this widely studied cofactor enhances the aggregation propensity of PHF6 by ordering monomers during nucleation and remaining associated with growing fibrils, consistent with experimentally characterized heparin-tau interactions. Overall, this effort provides detailed molecular insight into PHF6 aggregation thermodynamics and pathways and, furthermore, demonstrates the potential of modern multiscale modeling techniques to produce predictive models of amyloidogenic peptides simultaneously capturing sequence-specific effects and emergent aggregate structures.
Collapse
Affiliation(s)
- Evan Pretti
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106-5080
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106-5080
| |
Collapse
|
7
|
Jin J, Hwang J, Voth GA. Gaussian representation of coarse-grained interactions of liquids: Theory, parametrization, and transferability. J Chem Phys 2023; 159:184105. [PMID: 37942867 DOI: 10.1063/5.0160567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Coarse-grained (CG) interactions determined via bottom-up methodologies can faithfully reproduce the structural correlations observed in fine-grained (atomistic resolution) systems, yet they can suffer from limited extensibility due to complex many-body correlations. As part of an ongoing effort to understand and improve the applicability of bottom-up CG models, we propose an alternative approach to address both accuracy and transferability. Our main idea draws from classical perturbation theory to partition the hard sphere repulsive term from effective CG interactions. We then introduce Gaussian basis functions corresponding to the system's characteristic length by linking these Gaussian sub-interactions to the local particle densities at each coordination shell. The remaining perturbative long-range interaction can be treated as a collective solvation interaction, which we show exhibits a Gaussian form derived from integral equation theories. By applying this numerical parametrization protocol to CG liquid systems, our microscopic theory elucidates the emergence of Gaussian interactions in common phenomenological CG models. To facilitate transferability for these reduced descriptions, we further infer equations of state to determine the sub-interaction parameter as a function of the system variables. The reduced models exhibit excellent transferability across the thermodynamic state points. Furthermore, we propose a new strategy to design the cross-interactions between distinct CG sites in liquid mixtures. This involves combining each Gaussian in the proper radial domain, yielding accurate CG potentials of mean force and structural correlations for multi-component systems. Overall, our findings establish a solid foundation for constructing transferable bottom-up CG models of liquids with enhanced extensibility.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637, USA
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Jisung Hwang
- Department of Statistics, The University of Chicago, 5747 S. Ellis Ave., Chicago, Illinois 60637, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637, USA
| |
Collapse
|
8
|
Nguyen M, Shen K, Sherck N, Köhler S, Gupta R, Delaney KT, Shell MS, Fredrickson GH. A molecularly informed field-theoretic study of the complexation of polycation PDADMA with mixed micelles of sodium dodecyl sulfate and ethoxylated surfactants. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:75. [PMID: 37665423 DOI: 10.1140/epje/s10189-023-00332-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
The self-assembly and phase separation of mixtures of polyelectrolytes and surfactants are important to a range of applications, from formulating personal care products to drug encapsulation. In contrast to systems of oppositely charged polyelectrolytes, in polyelectrolyte-surfactant systems the surfactants micellize into structures that are highly responsive to solution conditions. In this work, we examine how the morphology of micelles and degree of polyelectrolyte adsorption dynamically change upon varying the mixing ratio of charged and neutral surfactants. Specifically, we consider a solution of the cationic polyelectrolyte polydiallyldimethylammonium, anionic surfactant sodium dodecyl sulfate, neutral ethoxylated surfactants (C[Formula: see text]EO[Formula: see text]), sodium chloride salt, and water. To capture the chemical specificity of these species, we leverage recent developments in constructing molecularly informed field theories via coarse-graining from all-atom simulations. Our results show how changing the surfactant mixing ratios and the identity of the nonionic surfactant modulates micelle size and surface charge, and as a result dictates the degree of polyelectrolyte adsorption. These results are in semi-quantitative agreement with experimental observations on the same system.
Collapse
Affiliation(s)
- My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | | | | | - Rohini Gupta
- California Research Alliance (CARA) by BASF, Berkeley, CA, 94720, USA
| | - Kris T Delaney
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
| | - Glenn H Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA.
- Department of Materials, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
9
|
Shen K, Nguyen M, Sherck N, Yoo B, Köhler S, Speros J, Delaney KT, Shell MS, Fredrickson GH. Predicting surfactant phase behavior with a molecularly informed field theory. J Colloid Interface Sci 2023; 638:84-98. [PMID: 36736121 DOI: 10.1016/j.jcis.2023.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
HYPOTHESIS The computational study of surfactants and self-assembly is challenging because 1) models need to reflect chemistry-specific interactions, and 2) self-assembled structures are difficult to equilibrate with conventional molecular dynamics. We propose to overcome these challenges with a multiscale simulation approach where relative entropy minimization transfers chemically-detailed information from all-atom (AA) simulations to coarse-grained (CG) models that can be simulated using field-theoretic methods. Field-theoretic simulations are not limited by intrinsic physical time scales like diffusion and allow for rigorous equilibration via free energy minimization. This approach should enable the study of properties that are difficult to obtain by particle-based simulations. SIMULATION WORK We apply this workflow to sodium dodecylsulfate. To ensure chemical fidelity we present an AA force field calibrated against interfacial tension experiments. We generate CG models from AA simulation trajectories and show that particle-based and field-theoretic simulations of the CG model reproduce AA simulations and experimental measurements. FINDINGS The workflow captures the complex balance of interactions in a multicomponent system ultimately described by an atomistic model. The resulting CG models can study complex 3D phases like double or alternating gyroids, and reproduce salt effects on properties like aggregation number and shape transitions.
Collapse
Affiliation(s)
- Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| | - My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - Brian Yoo
- BASF Corporation, Tarrytown 10591, NY, United States
| | | | - Joshua Speros
- California Research Alliance (CARA) by BASF, Berkeley 94720, CA, United States
| | - Kris T Delaney
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| | - Glenn H Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Department of Materials Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| |
Collapse
|
10
|
Tang J, Kobayashi T, Zhang H, Fukuzawa K, Itoh S. Enhancing pressure consistency and transferability of structure-based coarse-graining. Phys Chem Chem Phys 2023; 25:2256-2264. [PMID: 36594875 DOI: 10.1039/d2cp04849c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Coarse-graining, which models molecules with coarse-grained (CG) beads, allows molecular dynamics simulations to be applied to systems with large length and time scales while preserving the essential molecular structure. However, CG models generally have insufficient representability and transferability. A commonly used method to resolve this problem is multi-state iterative Boltzmann inversion (MS-IBI) with pressure correction, which matches both the structural properties and pressures at different thermodynamic states between CG and all-atom (AA) simulations. Nevertheless, this method is usually effective only in a narrow pressure range. In this paper, we propose a modified CG scheme to overcome this limitation. We find that the fundamental reason for this limitation is that CG beads at close distances are ellipsoids rather than isotropically compressed spheres, as described in conventional CG models. Hence, we propose a method to compensate for such differences by slightly modifying the radial distribution functions (RDFs) derived from AA simulations and using the modified RDFs as references for pressure-corrected MS-IBI. We also propose a method to determine the initial non-bonded potential using both the target RDF and pressure. Using n-dodecane as a case study, we demonstrate that the CG model developed using our scheme reproduces the RDFs and pressures over a wide range of pressure states, including three reference low-pressure states and two test high-pressure states. The proposed scheme allows for accurate CG simulations of systems in which pressure or density varies with time and/or position.
Collapse
Affiliation(s)
- Jiahao Tang
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Takayuki Kobayashi
- Department of Micro-Nano Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hedong Zhang
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Kenji Fukuzawa
- Department of Micro-Nano Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Shintaro Itoh
- Department of Micro-Nano Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
11
|
Nguyen M, Sherck N, Shen K, Edwards CER, Yoo B, Köhler S, Speros JC, Helgeson ME, Delaney KT, Shell MS, Fredrickson GH. Predicting Polyelectrolyte Coacervation from a Molecularly Informed Field-Theoretic Model. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Chelsea E. R. Edwards
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Brian Yoo
- BASF Corporation, Tarrytown, New York 10591, United States
| | | | - Joshua C. Speros
- California Research Alliance (CARA) by BASF, Berkeley, California 94720, United States
| | - Matthew E. Helgeson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
12
|
Jin J, Pak AJ, Durumeric AEP, Loose TD, Voth GA. Bottom-up Coarse-Graining: Principles and Perspectives. J Chem Theory Comput 2022; 18:5759-5791. [PMID: 36070494 PMCID: PMC9558379 DOI: 10.1021/acs.jctc.2c00643] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/14/2023]
Abstract
Large-scale computational molecular models provide scientists a means to investigate the effect of microscopic details on emergent mesoscopic behavior. Elucidating the relationship between variations on the molecular scale and macroscopic observable properties facilitates an understanding of the molecular interactions driving the properties of real world materials and complex systems (e.g., those found in biology, chemistry, and materials science). As a result, discovering an explicit, systematic connection between microscopic nature and emergent mesoscopic behavior is a fundamental goal for this type of investigation. The molecular forces critical to driving the behavior of complex heterogeneous systems are often unclear. More problematically, simulations of representative model systems are often prohibitively expensive from both spatial and temporal perspectives, impeding straightforward investigations over possible hypotheses characterizing molecular behavior. While the reduction in resolution of a study, such as moving from an atomistic simulation to that of the resolution of large coarse-grained (CG) groups of atoms, can partially ameliorate the cost of individual simulations, the relationship between the proposed microscopic details and this intermediate resolution is nontrivial and presents new obstacles to study. Small portions of these complex systems can be realistically simulated. Alone, these smaller simulations likely do not provide insight into collectively emergent behavior. However, by proposing that the driving forces in both smaller and larger systems (containing many related copies of the smaller system) have an explicit connection, systematic bottom-up CG techniques can be used to transfer CG hypotheses discovered using a smaller scale system to a larger system of primary interest. The proposed connection between different CG systems is prescribed by (i) the CG representation (mapping) and (ii) the functional form and parameters used to represent the CG energetics, which approximate potentials of mean force (PMFs). As a result, the design of CG methods that facilitate a variety of physically relevant representations, approximations, and force fields is critical to moving the frontier of systematic CG forward. Crucially, the proposed connection between the system used for parametrization and the system of interest is orthogonal to the optimization used to approximate the potential of mean force present in all systematic CG methods. The empirical efficacy of machine learning techniques on a variety of tasks provides strong motivation to consider these approaches for approximating the PMF and analyzing these approximations.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander J. Pak
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Aleksander E. P. Durumeric
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Timothy D. Loose
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
13
|
Nkepsu Mbitou RL, Goujon F, Dequidt A, Latour B, Devémy J, Blaak R, Martzel N, Emeriau-Viard C, Tchoufag J, Garruchet S, Munch E, Hauret P, Malfreyt P. Consistent and Transferable Force Fields for Statistical Copolymer Systems at the Mesoscale. J Chem Theory Comput 2022; 18:6940-6951. [PMID: 36205431 DOI: 10.1021/acs.jctc.2c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The statistical trajectory matching (STM) method was applied successfully to derive coarse grain (CG) models for bulk properties of homopolymers. The extension of the methodology for building CG models for statistical copolymer systems is much more challenging. We present here the strategy for developing CG models for styrene-butadiene-rubber, and we compare the quality of the resulting CG force fields on the structure and thermodynamics at different chemical compositions. The CG models are used through the use of a genuine mesoscopic method called the dissipative particle dynamics method and compared to high-resolution molecular dynamics simulations. We conclude that the STM method is able to produce coarse-grained potentials that are transferable in composition by using only a few reference systems. Additionally, this methodology can be applied on any copolymer system.
Collapse
Affiliation(s)
- R L Nkepsu Mbitou
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France.,Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - F Goujon
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| | - A Dequidt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| | - B Latour
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - J Devémy
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| | - R Blaak
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| | - N Martzel
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - C Emeriau-Viard
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - J Tchoufag
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - S Garruchet
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - E Munch
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - P Hauret
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - P Malfreyt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| |
Collapse
|
14
|
Kanekal KH, Rudzinski JF, Bereau T. Broad chemical transferability in structure-based coarse-graining. J Chem Phys 2022; 157:104102. [DOI: 10.1063/5.0104914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Compared to top-down coarse-grained (CG) models, bottom-up approaches are capable of offering higher structural fidelity. This fidelity results from the tight link to a higher-resolution reference, making the CG model chemically specific. Unfortunately, chemical specificity can be at odds with compound-screening strategies, which call for transferable parametrizations. Here we present an approach to reconcile bottom-up, structure-preserving CG models with chemical transferability. We consider the bottom-up CG parametrization of 3,441 C7O2 small-molecule isomers. Our approach combines atomic representations, unsupervised learning, and a large-scale extended-ensemble force-matching parametrization. We first identify a subset of 19 representative molecules, which maximally encode the local environment of all gas-phase conformers. Reference interactions between the 19 representative molecules were obtained from both homogeneous bulk liquids and various binary mixtures. An extended-ensemble parametrization over all 703 state points leads to a CG model that is both structure-based and chemically transferable. Remarkably, the resulting force field is on average more structurally accurate than single-state-point equivalents. Averaging over the extended ensemble acts as a mean-force regularizer, smoothing out both force and structural correlations that are overly specific to a single state point. Our approach aims at transferability through a set of CG bead types that can be used to easily construct new molecules, while retaining the benefits of a structure-based parametrization.
Collapse
Affiliation(s)
- Kiran H. Kanekal
- AK Kremer - Theory Group, Max Planck Institute for Polymer Research, Germany
| | | | - Tristan Bereau
- Van 't Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam, Netherlands
| |
Collapse
|
15
|
Monroe JI, Shen VK. Learning Efficient, Collective Monte Carlo Moves with Variational Autoencoders. J Chem Theory Comput 2022; 18:3622-3636. [PMID: 35613327 PMCID: PMC11210279 DOI: 10.1021/acs.jctc.2c00110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Discovering meaningful collective variables for enhancing sampling, via applied biasing potentials or tailored MC move sets, remains a major challenge within molecular simulation. While recent studies identifying collective variables with variational autoencoders (VAEs) have focused on the encoding and latent space discovered by a VAE, the impact of the decoding and its ability to act as a generative model remains unexplored. We demonstrate how VAEs may be used to learn (on-the-fly and with minimal human intervention) highly efficient, collective Monte Carlo moves that accelerate sampling along the learned collective variable. In contrast to many machine learning-based efforts to bias sampling and generate novel configurations, our methods result in exact sampling in the ensemble of interest and do not require reweighting. In fact, we show that the acceptance rates of our moves approach unity for a perfect VAE model. While this is never observed in practice, VAE-based Monte Carlo moves still enhance sampling of new configurations. We demonstrate, however, that the form of the encoding and decoding distributions, in particular the extent to which the decoder reflects the underlying physics, greatly impacts the performance of the trained VAE.
Collapse
Affiliation(s)
- Jacob I Monroe
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| | - Vincent K Shen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| |
Collapse
|
16
|
DeLyser MR, Noid WG. Coarse-grained models for local density gradients. J Chem Phys 2022; 156:034106. [DOI: 10.1063/5.0075291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Michael R. DeLyser
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W. G. Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
17
|
Dhamankar S, Webb MA. Chemically specific coarse‐graining of polymers: Methods and prospects. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satyen Dhamankar
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| | - Michael A. Webb
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| |
Collapse
|
18
|
Potter T, Barrett EL, Miller MA. Automated Coarse-Grained Mapping Algorithm for the Martini Force Field and Benchmarks for Membrane-Water Partitioning. J Chem Theory Comput 2021; 17:5777-5791. [PMID: 34472843 PMCID: PMC8444346 DOI: 10.1021/acs.jctc.1c00322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 01/08/2023]
Abstract
With a view to high-throughput simulations, we present an automated system for mapping and parameterizing organic molecules for use with the coarse-grained Martini force field. The method scales to larger molecules and a broader chemical space than existing schemes. The core of the mapping process is a graph-based analysis of the molecule's bonding network, which has the advantages of being fast, general, and preserving symmetry. The parameterization process pays special attention to coarse-grained beads in aromatic rings. It also includes a method for building efficient and stable frameworks of constraints for molecules with structural rigidity. The performance of the method is tested on a diverse set of 87 neutral organic molecules and the ability of the resulting models to capture octanol-water and membrane-water partition coefficients. In the latter case, we introduce an adaptive method for extracting partition coefficients from free-energy profiles to take into account the interfacial region of the membrane. We also use the models to probe the response of membrane-water partitioning to the cholesterol content of the membrane.
Collapse
Affiliation(s)
- Thomas
D. Potter
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United
Kingdom
| | - Elin L. Barrett
- Unilever
Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Mark A. Miller
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United
Kingdom
| |
Collapse
|
19
|
Wu C, Li K, Ning X, Zhang L. An Enhanced Scheme for Multiscale Modeling of Thermomechanical Properties of Polymer Bulks. J Phys Chem B 2021; 125:8612-8626. [PMID: 34291641 DOI: 10.1021/acs.jpcb.1c02663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While multiscale modeling significantly enhances the capability of molecular simulations of polymer systems, it is well realized that the systematically derived coarse-grained (CG) models generally underestimate the thermomechanical properties. In this work, a charge-based mapping scheme has been adopted to include explicit electrostatic interactions and benchmarked against two typical polymers, atactic poly(methyl methacrylate) (PMMA) and polystyrene (PS). The CG potentials are parameterized against the oligomer bulks of nine monomers per chain to match the essential structural features and the two basic pressure-volume-temperature (PVT) properties, which are obtained from the all-atomistic (AA) molecular dynamics (MD) simulations at a single elevated temperature. The so-parameterized CG potentials are extended with the MD method to simulate the two polymer bulks of one hundred monomers per chain over a wide temperature range. Without any scaling, all the simulated results, including mass densities and bulk moduli at room temperature, thermal expansion coefficients at rubbery and glassy states, and glass transition temperatures (Tg), compare well with the corresponding experimental data. The proposed scheme not only contributes to realistically simulating various thermomechanical properties of both apolar and polar polymers but also allows for directly simulating their electrical properties.
Collapse
Affiliation(s)
- Chaofu Wu
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Kewen Li
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Xutao Ning
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Lei Zhang
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| |
Collapse
|
20
|
Ma Z, Wang S, Kim M, Liu K, Chen CL, Pan W. Transfer learning of memory kernels for transferable coarse-graining of polymer dynamics. SOFT MATTER 2021; 17:5864-5877. [PMID: 34096961 DOI: 10.1039/d1sm00364j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present work concerns the transferability of coarse-grained (CG) modeling in reproducing the dynamic properties of the reference atomistic systems across a range of parameters. In particular, we focus on implicit-solvent CG modeling of polymer solutions. The CG model is based on the generalized Langevin equation, where the memory kernel plays the critical role in determining the dynamics in all time scales. Thus, we propose methods for transfer learning of memory kernels. The key ingredient of our methods is Gaussian process regression. By integration with the model order reduction via proper orthogonal decomposition and the active learning technique, the transfer learning can be practically efficient and requires minimum training data. Through two example polymer solution systems, we demonstrate the accuracy and efficiency of the proposed transfer learning methods in the construction of transferable memory kernels. The transferability allows for out-of-sample predictions, even in the extrapolated domain of parameters. Built on the transferable memory kernels, the CG models can reproduce the dynamic properties of polymers in all time scales at different thermodynamic conditions (such as temperature and solvent viscosity) and for different systems with varying concentrations and lengths of polymers.
Collapse
Affiliation(s)
- Zhan Ma
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Shu Wang
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Minhee Kim
- Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kaibo Liu
- Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Wenxiao Pan
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
21
|
Sherck N, Shen K, Nguyen M, Yoo B, Köhler S, Speros JC, Delaney KT, Shell MS, Fredrickson GH. Molecularly Informed Field Theories from Bottom-up Coarse-Graining. ACS Macro Lett 2021; 10:576-583. [PMID: 35570772 DOI: 10.1021/acsmacrolett.1c00013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymer formulations possessing mesostructures or phase coexistence are challenging to simulate using atomistic particle-explicit approaches due to the disparate time and length scales, while the predictive capability of field-based simulations is hampered by the need to specify interactions at a coarser scale (e.g., χ-parameters). To overcome the weaknesses of both, we introduce a bottom-up coarse-graining methodology that leverages all-atom molecular dynamics to molecularly inform coarser field-theoretic models. Specifically, we use relative-entropy coarse-graining to parametrize particle models that are directly and analytically transformable into statistical field theories. We demonstrate the predictive capability of this approach by reproducing experimental aqueous poly(ethylene oxide) (PEO) cloud-point curves with no parameters fit to experimental data. This synergistic approach to multiscale polymer simulations opens the door to de novo exploration of phase behavior across a wide variety of polymer solutions and melt formulations.
Collapse
Affiliation(s)
- Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Brian Yoo
- BASF Corporation, Tarrytown, New York 10591, United States
| | | | - Joshua C. Speros
- California Research Alliance (CARA) by BASF, Berkeley, California 94720, United States
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
22
|
Szukalo RJ, Noid WG. Investigating the energetic and entropic components of effective potentials across a glass transition. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:154004. [PMID: 33498016 DOI: 10.1088/1361-648x/abdff8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
By eliminating unnecessary details, coarse-grained (CG) models provide the necessary efficiency for simulating scales that are inaccessible to higher resolution models. However, because they average over atomic details, the effective potentials governing CG degrees of freedom necessarily incorporate significant entropic contributions, which limit their transferability and complicate the treatment of thermodynamic properties. This work employs a dual-potential approach to consider the energetic and entropic contributions to effective interaction potentials for CG models. Specifically, we consider one- and three-site CG models for ortho-terphenyl (OTP) both above and below its glass transition. We employ the multiscale coarse-graining (MS-CG) variational principle to determine interaction potentials that accurately reproduce the structural properties of an all-atom (AA) model for OTP at each state point. We employ an energy-matching variational principle to determine an energy operator that accurately reproduces the intra- and inter-molecular energy of the AA model. While the MS-CG pair potentials are almost purely repulsive, the corresponding pair energy functions feature a pronounced minima that corresponds to contacting benzene rings. These energetic functions then determine an estimate for the entropic component of the MS-CG interaction potentials. These entropic functions accurately predict the MS-CG pair potentials across a wide range of liquid state points at constant density. Moreover, the entropic functions also predict pair potentials that quite accurately model the AA pair structure below the glass transition. Thus, the dual-potential approach appears a promising approach for modeling AA energetics, as well as for predicting the temperature-dependence of CG effective potentials.
Collapse
Affiliation(s)
- Ryan J Szukalo
- Department of Chemistry, Penn State University, University Park, PA 16802 United States of America
| | - W G Noid
- Department of Chemistry, Penn State University, University Park, PA 16802 United States of America
| |
Collapse
|
23
|
Rudzinski JF, Bereau T. Coarse-grained conformational surface hopping: Methodology and transferability. J Chem Phys 2020; 153:214110. [DOI: 10.1063/5.0031249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Van ’t Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|