1
|
Sorkin B, Diamant H, Ariel G. Universal Relation between Entropy and Kinetics. PHYSICAL REVIEW LETTERS 2023; 131:147101. [PMID: 37862659 DOI: 10.1103/physrevlett.131.147101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/25/2023] [Indexed: 10/22/2023]
Abstract
Relating thermodynamic and kinetic properties is a conceptual challenge with many practical benefits. Here, based on first principles, we derive a rigorous inequality relating the entropy and the dynamic propagator of particle configurations. It is universal and applicable to steady states arbitrarily far from thermodynamic equilibrium. Applying the general relation to diffusive dynamics yields a relation between the entropy and the (normal or anomalous) diffusion coefficient. The relation can be used to obtain useful bounds for the late-time diffusion coefficient from the calculated steady-state entropy or, conversely, to estimate the entropy based on measured diffusion coefficients. We demonstrate the validity and usefulness of the relation through several examples and discuss its broad range of applications, in particular, for systems far from equilibrium.
Collapse
Affiliation(s)
- Benjamin Sorkin
- School of Chemistry and Center for Physics and Chemistry of Living Systems, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Haim Diamant
- School of Chemistry and Center for Physics and Chemistry of Living Systems, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, 52000 Ramat Gan, Israel
| |
Collapse
|
2
|
Saw S, Costigliola L, Dyre JC. Configurational temperature in active matter. II. Quantifying the deviation from thermal equilibrium. Phys Rev E 2023; 107:024610. [PMID: 36932493 DOI: 10.1103/physreve.107.024610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
This paper proposes using the configurational temperature T_{conf} for quantifying how far an active-matter system is from thermal equilibrium. We measure this "distance" by the ratio of the systemic temperature T_{s} to T_{conf}, where T_{s} is the canonical-ensemble temperature for which the average potential energy is equal to that of the active-matter system. T_{conf} is "local" in the sense that it is the average of a function, which depends only on how the potential energy varies in the vicinity of a given configuration. In contrast, T_{s} is a global quantity. The quantity T_{s}/T_{conf} is straightforward to evaluate in a computer simulation; equilibrium simulations in conjunction with a single steady-state active-matter configuration are enough to determine T_{s}/T_{conf}. We validate the suggestion that T_{s}/T_{conf} quantifies the deviation from thermal equilibrium by data for the radial distribution function of the 3D Kob-Andersen and 2D Yukawa active-matter models with active Ornstein-Uhlenbeck and active Brownian Particle dynamics. Moreover, we show that T_{s}/T_{conf}, structure, and dynamics of the homogeneous phase are all approximately invariant along the motility-induced phase separation boundary in the phase diagram of the 2D Yukawa model. The measure T_{s}/T_{conf} is not limited to active matter and can be used for quantifying how far any system involving a potential-energy function, e.g., a driven Hamiltonian system, is from thermal equilibrium.
Collapse
Affiliation(s)
- Shibu Saw
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Lorenzo Costigliola
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
3
|
Saw S, Costigliola L, Dyre JC. Configurational temperature in active matter. I. Lines of invariant physics in the phase diagram of the Ornstein-Uhlenbeck model. Phys Rev E 2023; 107:024609. [PMID: 36932558 DOI: 10.1103/physreve.107.024609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
This paper shows that the configurational temperature of liquid-state theory, T_{conf}, defines an energy scale, which can be used for adjusting model parameters of active Ornstein-Uhlenbeck particle (AOUP) models in order to achieve approximately invariant structure and dynamics upon a density change. The required parameter changes are calculated from the variation of a single configuration's T_{conf} for a uniform scaling of all particle coordinates. The resulting equations are justified theoretically for models involving a potential-energy function with hidden scale invariance. The validity of the procedure is illustrated by computer simulations of the Kob-Andersen binary Lennard-Jones AOUP model, showing the existence of lines of approximate invariance of the reduced-unit radial distribution function and time-dependent mean-square displacement.
Collapse
Affiliation(s)
- Shibu Saw
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Lorenzo Costigliola
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
4
|
Jiang Y, Weeks ER, Bailey NP. Isomorphs in sheared binary Lennard-Jones glass: Transient response. Phys Rev E 2023; 107:014610. [PMID: 36797950 DOI: 10.1103/physreve.107.014610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023]
Abstract
We have studied shear deformation of binary Lennard-Jones glasses to investigate the extent to which the transient part of the stress strain curves is invariant when the thermodynamic state point is varied along an isomorph. Shear deformations were carried out on glass samples of varying stability, determined by cooling rate, and at varying strain rates, at state points deep in the glass. Density changes up to and exceeding a factor of two were made. We investigated several different methods for generating isomorphs but none of the previously developed methods could generate sufficiently precise isomorphs given the large density changes and nonequilibrium situation. Instead, the temperatures for these higher densities were chosen to give state points isomorphic to the starting state point by requiring the steady-state flow stress for isomorphic state points to be invariant in reduced units. In contrast to the steady-state flow stress, we find that the peak stress on the stress strain curve is not invariant. The peak stress decreases by a few percent for each ten percent increase in density, although the differences decrease with increasing density. Analysis of strain profiles and nonaffine motion during the transient phase suggests that the root of the changes in peak stress is a varying tendency to form shear bands, with the largest tendency occurring at the lowest densities. We suggest that this reflects the effective steepness of the potential; a higher effective steepness gives a greater tendency to form shear bands.
Collapse
Affiliation(s)
- Yonglun Jiang
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, USA
| | - Eric R Weeks
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, USA
| | - Nicholas P Bailey
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
5
|
Niss K. A density scaling conjecture for aging glasses. J Chem Phys 2022; 157:054503. [DOI: 10.1063/5.0090869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aging rate of glasses has traditionally been modeled as a function of temperature, T , andfictive temperature, while density, ρ, is not explicitly included as a parameter. However, this de-scription does not naturally connect to the modern understanding of what governs the relaxationrate in equilibrium. In equilibrium it is well known that the relaxation rate, γeq , depends on tem-perature and density. In addition a large class of systems obey density scaling which means therate specifically depends on the scaling parameter, Γ = e(ρ)/T , where e(ρ) is a system specificfunction. This paper present a generalization of the fictive temperature concept in terms of a fic-tive scaling paramter, Γfic , and a density scaling conjecture for aging glasses in which the agingrate depends on Γ and Γfic .
Collapse
|
6
|
Rahman M, Carter BMGD, Saw S, Douglass IM, Costigliola L, Ingebrigtsen TS, Schrøder TB, Pedersen UR, Dyre JC. Isomorph Invariance of Higher-Order Structural Measures in Four Lennard-Jones Systems. Molecules 2021; 26:molecules26061746. [PMID: 33804670 PMCID: PMC8003765 DOI: 10.3390/molecules26061746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
In the condensed liquid phase, both single- and multicomponent Lennard-Jones (LJ) systems obey the "hidden-scale-invariance" symmetry to a good approximation. Defining an isomorph as a line of constant excess entropy in the thermodynamic phase diagram, the consequent approximate isomorph invariance of structure and dynamics in appropriate units is well documented. However, although all measures of the structure are predicted to be isomorph invariant, with few exceptions only the radial distribution function (RDF) has been investigated. This paper studies the variation along isomorphs of the nearest-neighbor geometry quantified by the occurrence of Voronoi structures, Frank-Kasper bonds, icosahedral local order, and bond-orientational order. Data are presented for the standard LJ system and for three binary LJ mixtures (Kob-Andersen, Wahnström, NiY2). We find that, while the nearest-neighbor geometry generally varies significantly throughout the phase diagram, good invariance is observed along the isomorphs. We conclude that higher-order structural correlations are no less isomorph invariant than is the RDF.
Collapse
Affiliation(s)
- Mahajabin Rahman
- Department of Physics, Emory University, Atlanta, GA 30322, USA;
| | | | - Shibu Saw
- “Glass and Time”, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark; (S.S.); (I.M.D.); (L.C.); (T.S.I.); (T.B.S.); (U.R.P.)
| | - Ian M. Douglass
- “Glass and Time”, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark; (S.S.); (I.M.D.); (L.C.); (T.S.I.); (T.B.S.); (U.R.P.)
| | - Lorenzo Costigliola
- “Glass and Time”, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark; (S.S.); (I.M.D.); (L.C.); (T.S.I.); (T.B.S.); (U.R.P.)
| | - Trond S. Ingebrigtsen
- “Glass and Time”, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark; (S.S.); (I.M.D.); (L.C.); (T.S.I.); (T.B.S.); (U.R.P.)
| | - Thomas B. Schrøder
- “Glass and Time”, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark; (S.S.); (I.M.D.); (L.C.); (T.S.I.); (T.B.S.); (U.R.P.)
| | - Ulf R. Pedersen
- “Glass and Time”, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark; (S.S.); (I.M.D.); (L.C.); (T.S.I.); (T.B.S.); (U.R.P.)
| | - Jeppe C. Dyre
- “Glass and Time”, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark; (S.S.); (I.M.D.); (L.C.); (T.S.I.); (T.B.S.); (U.R.P.)
- Correspondence:
| |
Collapse
|