1
|
Oldani N, Freixas VM, Ondarse-Alvarez D, Sharifzadeh S, Gibson T, Tretiak S, Fernandez-Alberti S. Electronic Couplings versus Thermal Fluctuations in the Internal Conversion of Perylene Diimides: The Battle to Localize the Exciton. J Chem Theory Comput 2024; 20:5820-5828. [PMID: 38984946 DOI: 10.1021/acs.jctc.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Energy transfer processes among units of light-harvesting homo-oligomers impact the efficiency of these materials as components in organic optoelectronic devices such as solar cells. Perylene diimide (PDI), a prototypical dye, features exceptional light absorption and highly tunable optical and electronic properties. These properties can be modulated by varying the number of PDI units and linkers between them. Herein, atomistic nonadiabatic excited state molecular dynamics is used to explore the energy transfer during the internal conversion of acetylene and diacetylene bridged dimeric and trimeric PDIs. Our simulations reveal a significant impact of the bridge type on the transient exciton localization/delocalization between units of PDI dimers. After electronic relaxation, larger exciton delocalization occurs in the PDI dimer connected by the diacetylene bridge with respect to the one connected by the shorter acetylene bridge. These changes can be rationalized by the Frenkel exciton model. We outline a technique for deriving parameters for this model using inputs provided by nonadiabatic dynamics simulations. Frenkel exciton description reveals an interplay between the relative strengths of the diagonal and off-diagonal disorders. Moreover, atomistic simulations and the Frenkel exciton model of the PDI trimer systems corroborate in detail the localization properties of the exciton on the molecular units during the internal conversion to the lowest-energy excited state when the units become effectively decoupled. Overall, atomistic nonadiabatic simulations in combination with the Frenkel exciton model can serve as a predictive framework for analyzing and predicting desired exciton traps in PDI-based oligomers designed for organic electronics and photonic devices.
Collapse
Affiliation(s)
- Nicolas Oldani
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Victor M Freixas
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Dianelys Ondarse-Alvarez
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Sahar Sharifzadeh
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Tammie Gibson
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | |
Collapse
|
2
|
Energy Transfer in Supramolecular Calix[4]arene – Perylene Bisimide Dye Light Harvesting Building Blocks: Resolving Loss Processes with Simultaneous Target Analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
3
|
Andermann AM, Rego LGC. Energetics of the charge generation in organic donor-acceptor interfaces. J Chem Phys 2022; 156:024104. [PMID: 35032994 DOI: 10.1063/5.0076611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Non-fullerene acceptor materials have posed new paradigms for the design of organic solar cells , whereby efficient carrier generation is obtained with small driving forces, in order to maximize the open-circuit voltage (VOC). In this paper, we use a coarse-grained mixed quantum-classical method, which combines Ehrenfest and Redfield theories, to shed light on the charge generation process in small energy offset interfaces. We have investigated the influence of the energetic driving force as well as the vibronic effects on the charge generation and photovoltaic energy conversion. By analyzing the effects of the Holstein and Peierls vibrational couplings, we find that vibrational couplings produce an overall effect of improving the charge generation. However, the two vibronic mechanisms play different roles: the Holstein relaxation mechanism decreases the charge generation, whereas the Peierls mechanism always assists the charge generation. Moreover, by examining the electron-hole binding energy as a function of time, we evince two distinct regimes for the charge separation: the temperature independent excitonic spread on a sub-100 fs timescale and the complete dissociation of the charge-transfer state that occurs on the timescale of tens to hundreds of picoseconds, depending on the temperature. The quantum dynamics of the system exhibits the three regimes of the Marcus electron transfer kinetics as the energy offset of the interface is varied.
Collapse
Affiliation(s)
- Artur M Andermann
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Luis G C Rego
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
4
|
Jang SJ, Burghardt I, Hsu CP, Bardeen CJ. Excitons: Energetics and spatiotemporal dynamics. J Chem Phys 2021; 155:200401. [PMID: 34852498 DOI: 10.1063/5.0075292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, USA and PhD Programs in Chemistry and Physics, and Initiative for the Theoretical Sciences, Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan and Physics Division, National Center for Theoretical Sciences, Taipei 106, Taiwan
| | - Christopher J Bardeen
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, USA
| |
Collapse
|
5
|
van Stokkum IHM, Kloz M, Polli D, Viola D, Weißenborn J, Peerbooms E, Cerullo G, Kennis JTM. Vibronic dynamics resolved by global and target analysis of ultrafast transient absorption spectra. J Chem Phys 2021; 155:114113. [PMID: 34551543 DOI: 10.1063/5.0060672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a methodology that provides a complete parametric description of the time evolution of the electronically and vibrationally excited states as detected by ultrafast transient absorption (TA). Differently from previous approaches, which started fitting the data after ≈100 fs, no data are left out in our methodology, and the "coherent artifact" and the instrument response function are fully taken into account. In case studies, the method is applied to solvents, the dye Nile blue, and all-trans β-carotene in cyclohexane solution. The estimated Damped Oscillation Associated Spectra (DOAS) and phases express the most important vibrational frequencies present in the molecular system. By global fit alone of the experimental data, it is difficult to interpret in detail the underlying dynamics. Since it is unfeasible to directly fit the data by a theoretical simulation, our enhanced DOAS methodology thus provides a useful "middle ground" where the theoretical description and the fit of the experimental data can meet. β-carotene in cyclohexane was complementarily studied with femtosecond stimulated Raman spectroscopy (FSRS). The fs-ps dynamics of β-carotene in cyclohexane in TA and FSRS experiments can be described by a sequential scheme S2 → hot S1 → S1' → S1 → S0 with lifetimes of 167 fs (fixed), 0.35, 1.1, and 9.6 ps. The correspondence of DOAS decaying concomitantly with hot S1 and the Species Associated Difference Spectra of hot S1 in TA and FSRS suggest that we observe here features of the vibrational relaxation and nuclear reorganization responsible for the hot S1 to S1 transition.
Collapse
Affiliation(s)
- Ivo H M van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Miroslav Kloz
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, CZ-18221 Prague, Czech Republic
| | - Dario Polli
- IFN-CNR, Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Daniele Viola
- IFN-CNR, Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Jörn Weißenborn
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ebo Peerbooms
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Giulio Cerullo
- IFN-CNR, Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - John T M Kennis
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|