1
|
Maj M. Solvatochromic charge model of isonitrile probes for investigating hydrogen-bond dynamics with 2DIR spectroscopy. J Chem Phys 2025; 162:014113. [PMID: 39760293 DOI: 10.1063/5.0242857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
Isonitrile-derivatized amino acids are emerging as highly effective infrared (IR) probes for investigating the structures and dynamics of hydrogen (H)-bonds. These probes enable the quantification of chemical exchange processes in solute-solvent complexes via two-dimensional IR spectroscopy and hold significant promise for site-specific dynamic studies within proteins. Despite their potential, theoretical models that elucidate the solvatochromism of isonitriles remain underdeveloped. Here, we present the development and validation of a solvatochromic charge model for isonitrile (N≡C) probes. Using density functional theory calculations, we parameterized solvatochromic charges for isonitrile and integrated them into classical molecular dynamics (MD) simulations of β-isocyanoalanine in various solvents, including water and fluorinated alcohols. The model incorporates solvent-induced frequency shifts and accurately reproduces complex experimental line shapes, including asymmetric features from non-Gaussian dynamics. The model successfully reproduced the bimodal distribution of frequency shifts corresponding to free and H-bonded species in alcohols, as well as cross-peaks due to chemical exchange. Achieving reproducibility required long MD trajectories, which were computationally demanding. To manage this, we implemented graphics processing unit acceleration, drastically reducing the computational time and enabling the efficient processing of extensive MD data. While some discrepancies in population ratios suggest the need for refined solvent force field parameters and modeling transition dipole moment variations, the developed solvatochromic model is a reliable tool for studying the solvation dynamics. The model enables more detailed investigations of ultrafast dynamics in solute-solvent complexes and represents important steps toward modeling site-specific dynamics of biomolecules with isonitrile probes.
Collapse
Affiliation(s)
- Michał Maj
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| |
Collapse
|
2
|
Mallon CJ, Hassani M, Osofsky EH, Familo SB, Fenlon EE, Tucker MJ. Unraveling Hydration Shell Dynamics and Viscosity Effects Around Cyanamide Probes via 2D IR Spectroscopy. J Am Chem Soc 2024. [PMID: 39701978 DOI: 10.1021/jacs.4c12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Hydration dynamics and solvent viscosity play critical roles in the structure and function of biomolecules. An overwhelming body of evidence suggests that protein and membrane fluctuations are closely linked to solvent fluctuations. While extensive research exists on the use of vibrational probes to detect local interactions and solvent dynamics, fewer studies have explored how the behavior of these reporters changes in response to bulk viscosity. To address this gap, two-dimensional infrared spectroscopy (2D IR) was employed in this study to investigate the ultrafast hydration dynamics around a cyanamide (NCN) probe attached to a nucleoside, deoxycytidine, in aqueous solutions with varying glycerol content. The use of a small vibrational probe on a targeted nucleic acid offers the potential to capture more localized hydration dynamics than alternative methods. The time scales for the frequency correlation decays were found to increase linearly with bulk viscosity, ranging from 0.9 to 11.4 ps over viscosities of 0.96-49.1 cP. Additionally, molecular dynamics (MD) simulations were performed to model the local hydration dynamics around the NCN probe. Interestingly, increasing the glycerol content did not significantly alter the hydration of the deoxycytidine. The MD simulations further suggested that the NCN probe's frequency fluctuations were primarily influenced by the dynamics of water in the second solvation shell. Cage correlation functions, which measure the movement of water molecules in and out of the second solvation shell, exhibited decays that closely matched those of the frequency-fluctuation correlation function (FFCF). These findings offer new insights into hydration dynamics and the impact of viscosity on biological systems.
Collapse
Affiliation(s)
- Christopher J Mallon
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Majid Hassani
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Ellia H Osofsky
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Savannah B Familo
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Edward E Fenlon
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
3
|
Gasse P, Stensitzki T, Müller-Werkmeister HM. 2D-IR spectroscopy of azide-labeled carbohydrates in H2O. J Chem Phys 2024; 161:195101. [PMID: 39564876 DOI: 10.1063/5.0225308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/03/2024] [Indexed: 11/21/2024] Open
Abstract
Carbohydrates constitute one of the key classes of biomacromolecules, yet vibrational spectroscopic studies involving carbohydrates remain scarce as spectra are highly congested and lack significant marker vibrations. Recently, we introduced and characterized a thiocyanate-labeled glucose [Gasse et al., J. Chem. Phys. 158, 145101 (2023)] demonstrating 2D-IR spectroscopy of carbohydrates using vibrational probes. Here, we build on that work and test azide groups as alternative for studies of carbohydrates to expand the available set of local probes. Many common carbohydrates with different azide labeling positions, such as galactose, glucose, or lactose, are readily available due to their application in click chemistry and hence do not require additional complex synthesis strategies. In this work, we have characterized azide-labeled glucose,, galactose, acetylglucosamine and lactose in water using IR and 2D-IR spectroscopy to test their potential for future applications in studies of carbohydrate-protein interactions. Our findings indicate that their absorption profiles and vibrational dynamics are primarily determined by the labeling position on the ring. However, we also observe additional variations between samples with the same labeling position. Furthermore, we demonstrate that their usage remains feasible at biologically relevant concentrations, highlighting their potential to probe more complex biological processes, i.e., enzymatic catalysis.
Collapse
Affiliation(s)
- P Gasse
- University of Potsdam, Institute of Chemistry, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14 667 Potsdam, Germany
| | - T Stensitzki
- University of Potsdam, Institute of Chemistry, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14 667 Potsdam, Germany
| | - H M Müller-Werkmeister
- University of Potsdam, Institute of Chemistry, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14 667 Potsdam, Germany
| |
Collapse
|
4
|
Tucker MJ, Mallon CJ, Hassani M. The Long and Short of Coupling and Uncoupling via 2D IR Spectroscopy. J Phys Chem B 2024. [PMID: 39561088 DOI: 10.1021/acs.jpcb.4c05511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Determining dynamic structural changes along with the functional movements in biological systems has been a significant challenge for scientists for several decades. Utilizing vibrational coupling with the aid of 2D IR probe pairs has aided in uncovering structural dynamics and functional roles of chemical moieties involved in actions such as membrane peptide folding and transport, ion and water transport, and drug-protein interactions. Both native and non-native vibrational probe pairs have been developed for infrared studies, and their efficacy has been tested in various systems. With these probe pairs, 2D IR spectroscopy captures frozen snapshots of the structural events involved in biological function through vibrational coupling and correlated spectral diffusion. In this Perspective, different treatments of vibrational coupling and coupling models will be addressed, and a review of some of the specific vibrational probe pairs used to study these coupling mechanisms is presented. Overall, the intrinsic molecular dynamics detected on these ultrafast time scales will provide an atomic level view of how chosen structures traverse reaction paths. Thus, it is important to evaluate and assess the accuracy of the different vibrational coupling models and their consistency with the prediction of different molecular structures.
Collapse
Affiliation(s)
- Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Christopher J Mallon
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Majid Hassani
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
5
|
Guerrieri L, Hall S, Luther BM, Krummel AT. Signatures of coherent vibrational dynamics in ethylene carbonate. J Chem Phys 2024; 161:164504. [PMID: 39469963 DOI: 10.1063/5.0216515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Despite having practical applications in battery technology and serving as a model system for Fermi resonance coupling, ethylene carbonate (EC) receives little direct attention as a vibrational probe in nonlinear vibrational spectroscopy experiments. EC contains a Fermi resonance that is well-characterized in the linear spectrum, and the environmental sensitivity of its Fermi resonance peaks could make it a good molecular probe for two-dimensional infrared spectroscopy (2DIR) experiments. As a model system, we investigate the linear and 2DIR vibrational spectrum of the carbonyl stretching region of ethylene carbonate in tetrahydrofuran. The 2DIR spectrum reveals peak dynamics that evolve coherently. We characterize these dynamics in the context of Redfield theory and find evidence that EC dynamics proceed through coherent pathways, including singular coherence transfer pathways that have not been widely observed in other studies. We find that coherent contributions play a significant role in the observed dynamics of cross-peaks in the 2DIR spectrum, which must be accounted for to extract accurate measurements of early waiting time dynamics.
Collapse
Affiliation(s)
- Luke Guerrieri
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Sarah Hall
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Brad M Luther
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Amber T Krummel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
6
|
Hess KA, Rohler CK, Boutwell DR, Snyder JM, Buchanan LE. Suppressing sidechain modes and improving structural resolution for 2D IR spectroscopy via vibrational lifetimes. J Chem Phys 2024; 161:054201. [PMID: 39087534 PMCID: PMC11296734 DOI: 10.1063/5.0207523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Vibrational spectroscopy of protein structure often utilizes 13C18O-labeling of backbone carbonyls to further increase structural resolution. However, sidechains such as arginine, aspartate, and glutamate absorb within the same spectral region, complicating the analysis of isotope-labeled peaks. In this study, we report that the waiting time between pump and probe pulses in two-dimensional infrared spectroscopy can be used to suppress sidechain modes in favor of backbone amide I' modes based on differences in vibrational lifetimes. Furthermore, differences in the lifetimes of 13C18O-amide I' modes can aid in the assignment of secondary structure for labeled residues. Using model disordered and β-sheet peptides, it was determined that while β-sheets exhibit a longer lifetime than disordered structures, amide I' modes in both secondary structures exhibit longer lifetimes than sidechain modes. Overall, this work demonstrates that collecting 2D IR data at delayed waiting times, based on differences in vibrational lifetime between modes, can be used to effectively suppress interfering sidechain modes and further identify secondary structures.
Collapse
Affiliation(s)
- Kayla A. Hess
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Cade K. Rohler
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Dalton R. Boutwell
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Jason M. Snyder
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Lauren E. Buchanan
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| |
Collapse
|
7
|
Yan C, Wang C, Wagner JC, Ren J, Lee C, Wan Y, Wang SE, Xiong W. Multidimensional Widefield Infrared-Encoded Spontaneous Emission Microscopy: Distinguishing Chromophores by Ultrashort Infrared Pulses. J Am Chem Soc 2024; 146:1874-1886. [PMID: 38085547 PMCID: PMC10811677 DOI: 10.1021/jacs.3c07251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/25/2024]
Abstract
Photoluminescence (PL) imaging has broad applications in visualizing biological activities, detecting chemical species, and characterizing materials. However, the chemical information encoded in the PL images is often limited by the overlapping emission spectra of chromophores. Here, we report a PL microscopy based on the nonlinear interactions between mid-infrared and visible excitations on matters, which we termed MultiDimensional Widefield Infrared-encoded Spontaneous Emission (MD-WISE) microscopy. MD-WISE microscopy can distinguish chromophores that possess nearly identical emission spectra via conditions in a multidimensional space formed by three independent variables: the temporal delay between the infrared and the visible pulses (t), the wavelength of visible pulses (λvis), and the frequencies of the infrared pulses (ωIR). This method is enabled by two mechanisms: (1) modulating the optical absorption cross sections of molecular dyes by exciting specific vibrational functional groups and (2) reducing the PL quantum yield of semiconductor nanocrystals, which was achieved through strong field ionization of excitons. Importantly, MD-WISE microscopy operates under widefield imaging conditions with a field of view of tens of microns, other than the confocal configuration adopted by most nonlinear optical microscopies, which require focusing the optical beams tightly. By demonstrating the capacity of registering multidimensional information into PL images, MD-WISE microscopy has the potential of expanding the number of species and processes that can be simultaneously tracked in high-speed widefield imaging applications.
Collapse
Affiliation(s)
- Chang Yan
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Center
for Ultrafast Science and Technology, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang
Institute for Advanced Study, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Chenglai Wang
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Jackson C. Wagner
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Jianyu Ren
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Carlynda Lee
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Yuhao Wan
- Department
of Pathology, University of California San
Diego, La Jolla, California 92093, United States
| | - Shizhen E. Wang
- Department
of Pathology, University of California San
Diego, La Jolla, California 92093, United States
| | - Wei Xiong
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Materials
Science and Engineering Program, University
of California San Diego, La Jolla, California 92093, United States
- Department
of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Islam MM, Nawagamuwage SU, Parshin IV, Richard MC, Burin AL, Rubtsov IV. Probing the Hydrophobic Region of a Lipid Bilayer at Specific Depths Using Vibrational Spectroscopy. J Am Chem Soc 2023; 145:26363-26373. [PMID: 37982703 DOI: 10.1021/jacs.3c10178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
A novel spectroscopic approach for studying the flexibility and mobility in the hydrophobic interior of lipid bilayers at specific depths is proposed. A set of test compounds featuring an azido moiety and a cyano or carboxylic acid moiety, connected by an alkyl chain of different lengths, was synthesized. FTIR data and molecular dynamics calculations indicated that the test compounds in a bilayer are oriented so that the cyano or carboxylic acid moiety is located in the lipid head-group region, while the azido group stays inside the bilayer at the depth determined by its alkyl chain length. We found that the asymmetric stretching mode of the azido group (νN3) can serve as a reporter of the membrane interior dynamics. FTIR and two-dimensional infrared (2DIR) studies were performed at different temperatures, ranging from 22 to 45 °C, covering the Lβ-Lα phase transition temperature of dipalmitoylphosphatidylcholine (∼41 °C). The width of the νN3 peak was found to be very sensitive to the phase transition and to the temperature in general. We introduced an order parameter, SN3, which characterizes restrictions to motion inside the bilayer. 2DIR spectra of νN3 showed different extents of inhomogeneity at different depths in the bilayer, with the smallest inhomogeneity in the middle of the leaflet. The spectral diffusion dynamics of the N3 peak was found to be dependent on the depth of the N3 group location in the bilayer. The obtained results enhance our understanding of the bilayer dynamics and can be extended to investigate membranes with more complex compositions.
Collapse
Affiliation(s)
- Md Muhaiminul Islam
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | | | - Igor V Parshin
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Margaret C Richard
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Alexander L Burin
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Igor V Rubtsov
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
9
|
Hill TD, Basnet S, Lepird HH, Rightnowar BW, Moran SD. Anisotropic dynamics of an interfacial enzyme active site observed using tethered substrate analogs and ultrafast 2D IR spectroscopy. J Chem Phys 2023; 159:165101. [PMID: 37870142 PMCID: PMC10597647 DOI: 10.1063/5.0167991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Enzymes accelerate the rates of biomolecular reactions by many orders of magnitude compared to bulk solution, and it is widely understood that this catalytic effect arises from a combination of polar pre-organization and electrostatic transition state stabilization. A number of recent reports have also implicated ultrafast (femtosecond-picosecond) timescale motions in enzymatic activity. However, complications arising from spatially-distributed disorder, the occurrence of multiple substrate binding modes, and the influence of hydration dynamics on solvent-exposed active sites still confound many experimental studies. Here we use ultrafast two-dimensional infrared (2D IR) spectroscopy and covalently-tethered substrate analogs to examine dynamical properties of the promiscuous Pyrococcus horikoshii ene-reductase (PhENR) active site in two binding configurations mimicking proposed "inactive" and "reactive" Michaelis complexes. Spectral diffusion measurements of aryl-nitrile substrate analogs reveal an end-to-end tradeoff between fast (sub-ps) and slow (>5 ps) motions. Fermi resonant aryl-azide analogs that sense interactions of coupled oscillators are described. Lineshape and quantum beat analyses of these probes reveal characteristics that correlate with aryl-nitrile frequency fluctuation correlation functions parameters, demonstrating that this anisotropy is an intrinsic property of the water-exposed active site, where countervailing gradients of fast dynamics and disorder in the reactant ground state are maintained near the hydration interface. Our results suggest several plausible factors leading to state-selective rate enhancement and promiscuity in PhENR. This study also highlights a strategy to detect perturbations to vibrational modes outside the transparent window of the mid-IR spectrum, which may be extended to other macromolecular systems.
Collapse
Affiliation(s)
| | - Sunil Basnet
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Hannah H. Lepird
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Blaze W. Rightnowar
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Sean D. Moran
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| |
Collapse
|
10
|
Perera SM, Aikawa T, Shaner SE, Moran SD, Wang L. Effects of the Intramolecular Group and Solvent on Vibrational Coupling Modes and Strengths of Fermi Resonances in Aryl Azides: A DFT Study of 4-Azidotoluene and 4-Azido- N-phenylmaleimide. J Phys Chem A 2023; 127:8911-8921. [PMID: 37819373 DOI: 10.1021/acs.jpca.3c06312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The high transition dipole strength of the azide asymmetric stretch makes aryl azides good candidates as vibrational probes (VPs). However, aryl azides have complex absorption profiles due to Fermi resonances (FRs). Understanding the origin and the vibrational modes involved in FRs of aryl azides is critically important toward developing them as VPs for studies of protein structures and structural changes in response to their surroundings. As such, we studied vibrational couplings in 4-azidotoluene and 4-azido-N-phenylmaleimide in two solvents, N,N-dimethylacetamide and tetrahydrofuran, to explore the origin and the effects of intramolecular group and solvent on the FRs of aryl azides using density functional theory (DFT) calculations with the B3LYP functional and seven basis sets, 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), and 6-311++G(df,pd). Two combination bands consisting of the azide symmetric stretch and another mode form strong FRs with the azide asymmetric stretch for both molecules. The FR profile was altered by replacing the methyl group with maleimide. Solvents change the relative peak position and intensity more significantly for 4-azido-N-phenylmaleimide, which makes it a more sensitive VP. Furthermore, the DFT results indicate that a comparison among the results from different basis sets can be used as a means to predict more reliable vibrational spectra.
Collapse
Affiliation(s)
- Sathya M Perera
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Tenyu Aikawa
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Sarah E Shaner
- Department of Chemistry and Physics, Southeast Missouri State University, Cape Girardeau, Missouri 63701, United States
| | - Sean D Moran
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Lichang Wang
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| |
Collapse
|
11
|
Löffler JG, Deniz E, Feid C, Franz VG, Bredenbeck J. Versatile Vibrational Energy Sensors for Proteins. Angew Chem Int Ed Engl 2022; 61:e202200648. [PMID: 35226765 PMCID: PMC9401566 DOI: 10.1002/anie.202200648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/10/2022]
Abstract
Vibrational energy transfer (VET) is emerging as key mechanism for protein functions, possibly playing an important role for energy dissipation, allosteric regulation, and enzyme catalysis. A deep understanding of VET is required to elucidate its role in such processes. Ultrafast VIS-pump/IR-probe spectroscopy can detect pathways of VET in proteins. However, the requirement of having a VET donor and a VET sensor installed simultaneously limits the possible target proteins and sites; to increase their number we compare six IR labels regarding their utility as VET sensors. We compare these labels in terms of their FTIR, and VET signature in VET donor-sensor dipeptides in different solvents. Furthermore, we incorporated four of these labels in PDZ3 to assess their capabilities in more complex systems. Our results show that different IR labels can be used interchangeably, allowing for free choice of the right label depending on the system under investigation and the methods available.
Collapse
Affiliation(s)
- Jan G. Löffler
- Institute of BiophysicsGoethe University FrankfurtMax-von-Laue-Straße 160438Frankfurt (Main)Germany
| | - Erhan Deniz
- Institute of BiophysicsGoethe University FrankfurtMax-von-Laue-Straße 160438Frankfurt (Main)Germany
| | - Carolin Feid
- Institute of BiophysicsGoethe University FrankfurtMax-von-Laue-Straße 160438Frankfurt (Main)Germany
| | - Valentin G. Franz
- Institute of BiophysicsGoethe University FrankfurtMax-von-Laue-Straße 160438Frankfurt (Main)Germany
| | - Jens Bredenbeck
- Institute of BiophysicsGoethe University FrankfurtMax-von-Laue-Straße 160438Frankfurt (Main)Germany
| |
Collapse
|
12
|
Löffler JG, Deniz E, Feid C, Franz VG, Bredenbeck J. Versatile Vibrational Energy Sensors for Proteins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jan G. Löffler
- Institute of Biophysics Goethe University Frankfurt Max-von-Laue-Straße 1 60438 Frankfurt (Main) Germany
| | - Erhan Deniz
- Institute of Biophysics Goethe University Frankfurt Max-von-Laue-Straße 1 60438 Frankfurt (Main) Germany
| | - Carolin Feid
- Institute of Biophysics Goethe University Frankfurt Max-von-Laue-Straße 1 60438 Frankfurt (Main) Germany
| | - Valentin G. Franz
- Institute of Biophysics Goethe University Frankfurt Max-von-Laue-Straße 1 60438 Frankfurt (Main) Germany
| | - Jens Bredenbeck
- Institute of Biophysics Goethe University Frankfurt Max-von-Laue-Straße 1 60438 Frankfurt (Main) Germany
| |
Collapse
|
13
|
Zhao R, Shirley JC, Lee E, Grofe A, Li H, Baiz CR, Gao J. Origin of thiocyanate spectral shifts in water and organic solvents. J Chem Phys 2022; 156:104106. [PMID: 35291777 PMCID: PMC8923707 DOI: 10.1063/5.0082969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Vibrational spectroscopy is a useful technique for probing chemical environments. The development of models that can reproduce the spectra of nitriles and azides is valuable because these probes are uniquely suited for investigating complex systems. Empirical vibrational spectroscopic maps are commonly employed to obtain the instantaneous vibrational frequencies during molecular dynamics simulations but often fail to adequately describe the behavior of these probes, especially in its transferability to a diverse range of environments. In this paper, we demonstrate several reasons for the difficulty in constructing a general-purpose vibrational map for methyl thiocyanate (MeSCN), a model for cyanylated biological probes. In particular, we found that electrostatics alone are not a sufficient metric to categorize the environments of different solvents, and the dominant features in intermolecular interactions in the energy landscape vary from solvent to solvent. Consequently, common vibrational mapping schemes do not cover all essential interaction terms adequately, especially in the treatment of van der Waals interactions. Quantum vibrational perturbation (QVP) theory, along with a combined quantum mechanical and molecular mechanical potential for solute-solvent interactions, is an alternative and efficient modeling technique, which is compared in this paper, to yield spectroscopic results in good agreement with experimental FTIR. QVP has been used to analyze the computational data, revealing the shortcomings of the vibrational maps for MeSCN in different solvents. The results indicate that insights from QVP analysis can be used to enhance the transferability of vibrational maps in future studies.
Collapse
Affiliation(s)
- Ruoqi Zhao
- Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province 130023, China
| | - Joseph C Shirley
- Department of Chemistry, University of Texas, Austin, Texas 78712, USA
| | - Euihyun Lee
- Department of Chemistry, University of Texas, Austin, Texas 78712, USA
| | - Adam Grofe
- Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province 130023, China
| | - Hui Li
- Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province 130023, China
| | - Carlos R Baiz
- Department of Chemistry, University of Texas, Austin, Texas 78712, USA
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
14
|
Liu H, Chen Y, Liu G, Zhou M. Pressure-induced Fermi resonance between fundamental modes in phthalic anhydride. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:204002. [PMID: 35193125 DOI: 10.1088/1361-648x/ac577c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
In situhigh-pressure Raman spectra of phthalic anhydride (PA) have been measured up to 16 GPa through diamond anvil cell technique. The results show that all the Raman bands are blue-shifted with the increase of pressure, accompanied by appearance of some new bands. A Fermi resonance phenomenon of the two Raman fundamental modes of PA at 773 cm-1and 801 cm-1is proposed at pressures above 6.6 GPa, where a possible first-order phase transition occurs. The pressure-induced changes of Fermi resonance parameters, e.g., intensity ratio, coupling coefficient and frequency gap of unperturbed transition, are discussed.
Collapse
Affiliation(s)
- HaiRui Liu
- College of physics, Jilin University, Changchun, 130012, People's Republic of China
| | - YinQi Chen
- College of physics, Jilin University, Changchun, 130012, People's Republic of China
| | - Guangtao Liu
- College of physics, Jilin University, Changchun, 130012, People's Republic of China
| | - Mi Zhou
- College of physics, Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
15
|
Soto J, Algarra M, Peláez D. Nitrene formation is the first step of the thermal and photochemical decomposition reactions of organic azides. Phys Chem Chem Phys 2022; 24:5109-5115. [PMID: 35156109 DOI: 10.1039/d1cp05785e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, the decomposition of a prototypical azide, isopropyl azide, both in the ground and excited states, has been investigated through the use of multiconfigurational CASSCF and MS-CASPT2 electronic structure approaches. Particular emphasis has been placed on the thermal reaction starting at the S0 ground state surface. It has been found that the azide thermally decomposes via a stepwise mechanism, whose rate-determining step is the formation of isopropyl nitrene, which is, in turn, the first step of the global mechanism. After that, the nitrene isomerizes to the corresponding imine derivative. Two routes are possible for such a decomposition: (i) a spin-allowed path involving a transition state; and (ii) a spin-forbidden one via a S0/T0 intersystem crossing. Both intermediates have been determined and characterised. Their associated relative energies have been found to be quite similar, 45.75 and 45.52 kcal mol-1, respectively. To complete this study, the kinetics of the singlet and triplet channels are modeled with the MESMER (Master Equation Solver for Multi-Energy Well Reactions) code by applying the RRKM and Landau-Zener (with WKB tunnelling correction) theories, respectively. It is found that the canonical rate-coefficients of the singlet path are 2-orders of magnitude higher than the rate-coefficients of the forbidden reaction. In addition, the concerted mechanism has been investigated that would lead to the formation of the imine derivative and nitrogen extrusion in the first step of the decomposition. After a careful analysis of CASSCF calculations with different active spaces and their comparison with single electronic configuration methods (MP2 and B3LYP), the concerted mechanism is discarded.
Collapse
Affiliation(s)
- Juan Soto
- Department of Physical Chemistry, Faculty of Science, University of Málaga, E-29071 Málaga, Spain.
| | - Manuel Algarra
- INAMAT2 Institute for Advanced Materials and Mathematics, Department of Sciences, Campus de Arrosadia, 31006 Pamplona, Spain
| | - Daniel Peláez
- Institut des Sciences Moléculaires d'Orsay (ISMO) - UMR 8214, Université Paris-Saclay, 91405 Orsay Cedex, Spain
| |
Collapse
|
16
|
Ruppert M, Creon A, Tidow H, Huse N. Population Dynamics of Stretching Excitations of p-Azido-phenylalanine Incorporated in Calmodulin-Peptide Complexes. J Phys Chem B 2022; 126:368-375. [PMID: 34990136 DOI: 10.1021/acs.jpcb.1c06775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We genetically incorporated the unnatural amino acid p-azido-phenylalanine (AzF) into the ubiquitous Ca2+ sensor protein calmodulin (CaM) in complex with different peptides to explore the response of the azido stretching line shape to varying binding motifs with femtosecond infrared spectroscopy. The dynamic response of the azido stretching mode varies in different CaM-peptide complexes. We model these dynamics as coherent excitations of Fermi resonances and extract a lifetime of the azido stretching vibration of about 1 ps. The resulting model parameters are commensurate with the linear infrared absorption lineshapes which suggests that the conformation-sensitive vibrational lineshape could be composed of Fermi resonances that differ between the protein-peptide complexes.
Collapse
Affiliation(s)
- Matthias Ruppert
- Hamburg Advanced Research Centre for Bioorganic Chemistry, Institute for Nanostructure and Solid-State Physics, Department of Physics, and Center for Free-Electron Laser Science, University of Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Anne Creon
- Hamburg Advanced Research Centre for Bioorganic Chemistry, Institute for Nanostructure and Solid-State Physics, Department of Physics, and Center for Free-Electron Laser Science, University of Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany.,Hamburg Advanced Research Centre for Bioorganic Chemistry, Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Henning Tidow
- Hamburg Advanced Research Centre for Bioorganic Chemistry, Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee, 149, D-22761 Hamburg, Germany
| | - Nils Huse
- Hamburg Advanced Research Centre for Bioorganic Chemistry, Institute for Nanostructure and Solid-State Physics, Department of Physics, and Center for Free-Electron Laser Science, University of Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee, 149, D-22761 Hamburg, Germany
| |
Collapse
|
17
|
Kwon HJ, Gwak S, Park JY, Cho M, Han H. TfNN 15N: A γ- 15N-Labeled Diazo-Transfer Reagent for the Synthesis of β- 15N-Labeled Azides. ACS OMEGA 2022; 7:293-298. [PMID: 35036700 PMCID: PMC8757338 DOI: 10.1021/acsomega.1c04679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Azides are infrared (IR) probes that are important for structure and dynamics studies of proteins. However, they often display complex IR spectra owing to Fermi resonances and multiple conformers. Isotopic substitution of azides weakens the Fermi resonance, allowing more accurate IR spectral analysis. Site-specifically 15N-labeled aromatic azides, but not aliphatic azides, are synthesized through nitrosation. Both 15N-labeled aromatic and aliphatic azides are synthesized through nucleophilic substitution or diazo-transfer reaction but as an isotopomeric mixture. We present the synthesis of TfNN15N, a γ-15N-labeled diazo-transfer reagent, and its use to prepare β-15N-labeled aliphatic as well as aromatic azides.
Collapse
Affiliation(s)
- Hyeok-Jun Kwon
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Sungduk Gwak
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jun Young Park
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- Center
for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
| | - Minhaeng Cho
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- Center
for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
| | - Hogyu Han
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
18
|
Dereka B, Lewis NHC, Keim JH, Snyder SA, Tokmakoff A. Characterization of Acetonitrile Isotopologues as Vibrational Probes of Electrolytes. J Phys Chem B 2021; 126:278-291. [PMID: 34962409 PMCID: PMC8762666 DOI: 10.1021/acs.jpcb.1c09572] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acetonitrile has emerged as a solvent candidate for novel electrolyte formulations in metal-ion batteries and supercapacitors. It features a bright local C≡N stretch vibrational mode whose infrared (IR) signature is sensitive to battery-relevant cations (Li+, Mg2+, Zn2+, Ca2+) both in pure form and in the presence of water admixture across a full possible range of concentrations from the dilute to the superconcentrated regime. Stationary and time-resolved IR spectroscopy thus emerges as a natural tool to study site-specific intermolecular interactions from the solvent perspective without introducing an extrinsic probe that perturbs solution morphology and may not represent the intrinsic dynamics in these electrolytes. The metal-coordinated acetonitrile, water-separated metal-acetonitrile pair, and free solvent each have a distinct vibrational signature that allows their unambiguous differentiation. The IR band frequency of the metal-coordinated acetonitrile depends on the ion charge density. To study the ion transport dynamics, it is necessary to differentiate energy-transfer processes from structural interconversions in these electrolytes. Isotope labeling the solvent is a necessary prerequisite to separate these processes. We discuss the design principles and choice of the CD313CN label and characterize its vibrational spectroscopy in these electrolytes. The Fermi resonance between 13C≡N and C-D stretches complicates the spectral response but does not prevent its effective utilization. Time-resolved two-dimensional (2D) IR spectroscopy can be performed on a mixture of acetonitrile isotopologues and much can be learned about the structural dynamics of various species in these formulations.
Collapse
Affiliation(s)
- Bogdan Dereka
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60637, United States
| | - Nicholas H C Lewis
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60637, United States
| | - Jonathan H Keim
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Scott A Snyder
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60637, United States
| |
Collapse
|
19
|
Choi S, Park J, Kwak K, Cho M. Substituent Effects on the Vibrational Properties of the CN Stretch Mode of Aromatic Nitriles: IR Probes Useful for Time-resolved IR Spectroscopy. Chem Asian J 2021; 16:2626-2632. [PMID: 34288497 DOI: 10.1002/asia.202100657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/19/2021] [Indexed: 11/10/2022]
Abstract
Developing ideal IR probes is essential to understand the structure and dynamics of biomolecules with time-resolved IR spectroscopies and imaging techniques. Especially, nitrile (CN) group has recently been proposed to serve as IR probes of the local environment of proteins. Herein, we investigated the effect of a substituent on the vibrational properties of the benzonitrile. The electron-donating and withdrawing character of p-substituent on benzonitrile are expected to modulate the vibrational frequency, molar extinction coefficient, and vibrational lifetime of CN probe. FT-IR revealed the positive correlation between electron-donating character and the molar extinction coefficient of CN stretch mode. Infrared pump-probe (IR-PP) measurements showed that the vibrational lifetime of CN stretch mode exhibits a relatively weak correlation with the electron-donating strength. Among the investigated samples, 4-dimethylamino benzonitrile with the strongest electron-donating strength shows enhanced absorption and extended vibrational lifetime. Utilizing substituent effects will be a practical strategy to improve the performance of the IR probe.
Collapse
Affiliation(s)
- Suin Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul, 02841, Republic of Korea.,Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Junyoung Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul, 02841, Republic of Korea.,Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul, 02841, Republic of Korea.,Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul, 02841, Republic of Korea.,Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|