Wang J, Liu Y, Zhuang W, Zhu W, Huang J, Tian L. Thermally Methanol Oxidation via the Mn
1@Co
3O
4(111) Facet: Non-CO Reaction Pathway.
ACS OMEGA 2023;
8:27293-27299. [PMID:
37546628 PMCID:
PMC10399189 DOI:
10.1021/acsomega.3c02667]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
Co3O4, as the support of single-atom catalysts, is effective in electron-structure modulation to get distinct methanol adsorption behaviors and adjustable reaction pathways for the methanol oxidation reaction. Herein, we considered the facets that constitute a Co vacancy of the Co3O4(111) facet and a foreign metal atom M (M = Fe, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, Mn) leading to single-atom catalysts. The Mn1@Co3O4(111) facet is the facet considered the most favorable among all of the possible terminations. Oxygen adsorption, decomposition, and its co-adsorption with methanol are the vital steps of methanol oxidation at the exposed Mn1@Co3O4(111) facet, giving rise to the stable configuration: two O* and one CH3OH* adsorbates. Then, the Mn1@Co3O4(111) facet activates the O-H and C-H bonds within CH3OH*, advances CH3O* → H2CO* → HCOO* → COO*, and releases the products H2, H2O, and CO2 consecutively.
Collapse