1
|
Limbu DK, London N, Faruque MO, Momeni MR. h-CMD: An efficient hybrid fast centroid and quasi-centroid molecular dynamics method for the simulation of vibrational spectra. J Chem Phys 2025; 162:014111. [PMID: 39749903 DOI: 10.1063/5.0248115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Developing efficient path integral (PI) methods for atomistic simulations of vibrational spectra in heterogeneous condensed phases and interfaces has long been a challenging task. Here, we present the h-CMD method, short for hybrid centroid molecular dynamics, which combines the recently introduced fast quasi-CMD (f-QCMD) method with fast CMD (f-CMD). In this scheme, molecules that are believed to suffer more seriously from the curvature problem of CMD, e.g., water, are treated with f-QCMD, while the rest, e.g., solid surfaces, are treated with f-CMD. To test the accuracy of the newly introduced scheme, the infrared spectra of the interfacial D2O confined in the archetypal ZIF-90 framework are simulated using h-CMD compared to a variety of other PI methods, including thermostatted ring-polymer molecular dynamics (T-RPMD) and partially adiabatic CMD as well as f-CMD and experiment as reference. Comparisons are also made with classical MD, where nuclear quantum effects are neglected entirely. Our detailed comparisons at different temperatures of 250-600 K show that h-CMD produces O-D stretches that are in close agreement with the experiment, correcting the known curvature problem and redshifting of the stretch peaks of CMD. h-CMD also corrects the known issues associated with too artificially dampened and broadened spectra of T-RPMD, which leads to missing the characteristic doublet feature of the interfacial confined water, rendering it unsuitable for these systems. The new h-CMD method broadens the applicability of f-QCMD to heterogeneous condensed phases and interfaces, where defining curvilinear coordinates for the entire system is not feasible.
Collapse
Affiliation(s)
- Dil K Limbu
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | - Nathan London
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | - Md Omar Faruque
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | - Mohammad R Momeni
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| |
Collapse
|
2
|
Ghaffarizadeh SA, Wang GJ. A Picture is Worth a Thousand Timesteps: Excess Entropy Scaling for Rapid Estimation of Diffusion Coefficients in Molecular-Dynamics Simulations of Fluids. J Chem Theory Comput 2024; 20:10362-10370. [PMID: 39508678 PMCID: PMC11635976 DOI: 10.1021/acs.jctc.4c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
In molecular-dynamics simulations of fluids, the Einstein-Helfand (EH) and Green-Kubo (GK) relationships are frequently used to compute a variety of transport coefficients, including diffusion coefficients. These relationships are formally valid in the limit of infinite sampling time: The error in the estimate of a transport coefficient (relative to an infinitely long simulation) asymptotically approaches zero as more dynamics are simulated and recorded. In practice, of course, one can only simulate a finite number of particles for a finite amount of time. In this work, we show that in this pre-asymptotic regime, an approach for estimating diffusion coefficients based upon excess entropy scaling (EES) achieves a significantly lower error than either EH or GK relationships at fixed online sampling time. This approach requires access only to structural information at the level of the radial distribution function (RDF). We further demonstrate that the use of a recently developed RDF mollification scheme significantly reduces the amount of sampling time needed to converge to the long-time value of the diffusion coefficient. We also demonstrate favorable sample-to-sample variances in the diffusion coefficient estimate obtained using EES as compared to those obtained using EH and GK.
Collapse
Affiliation(s)
- S. Arman Ghaffarizadeh
- Department
of Mechanical Engineering, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gerald J. Wang
- Department
of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Müller J, Hermann S, Sammüller F, Schmidt M. Gauge Invariance of Equilibrium Statistical Mechanics. PHYSICAL REVIEW LETTERS 2024; 133:217101. [PMID: 39642496 DOI: 10.1103/physrevlett.133.217101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 12/09/2024]
Abstract
We identify a recently proposed shifting operation on classical phase space as a gauge transformation for statistical mechanical microstates. The infinitesimal generators of the continuous gauge group form a noncommutative Lie algebra, which induces exact sum rules when thermally averaged. Gauge invariance with respect to finite shifting is demonstrated via Monte Carlo simulation in the transformed phase space which generates identical equilibrium averages. Our results point toward a deeper basis of statistical mechanics than previously known, and they offer avenues for systematic construction of exact identities and of sampling algorithms.
Collapse
|
4
|
Bilichenko M, Iannuzzi M, Tocci G. Slip Opacity and Fast Osmotic Transport of Hydrophobes at Aqueous Interfaces with Two-Dimensional Materials. ACS NANO 2024; 18:24118-24127. [PMID: 39172927 DOI: 10.1021/acsnano.4c05118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
We investigate the interfacial transport of water and hydrophobic solutes on van der Waals bilayers and heterostructures formed by stacking graphene, hBN, and MoS2 using extensive ab initio molecular dynamics simulations. We compute water slippage and the diffusio-osmotic transport coefficient of hydrophobic particles at the interface by combining hydrodynamics and the theory of the hydrophobic effect. We find that slippage is dominated by the layer that is in direct contact with water and only marginally altered by the second layer, leading to a so-called "slip opacity". The screening of the lateral forces, where the liquid does not feel the forces coming from the second nearest layer, is one of the factors leading to the "slip opacity" in our systems. The diffusio-osmotic transport of small hydrophobes (with a radius below 2.5 Å) is also affected by the slip opacity, being dramatically enhanced by slippage. Furthermore, the direction of diffusio-osmotic flow is controlled by the solute size, with the flow in the opposite direction of the concentration gradient for smaller hydrophobes, and vice versa for larger ones. We connect our findings to the wetting properties of two-dimensional materials, and we propose that slippage and wetting can be controlled separately: whereas the slippage is mostly determined by the layer in closer proximity to water, wetting can be finely tuned by stacking different two-dimensional materials. Our study advances the computational design of two-dimensional materials and van der Waals heterostructures, enabling precise control over wetting and slippage properties for applications in coatings and water purification membranes.
Collapse
Affiliation(s)
- Maria Bilichenko
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| | - Gabriele Tocci
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
5
|
Sammüller F, Schmidt M. Neural density functionals: Local learning and pair-correlation matching. Phys Rev E 2024; 110:L032601. [PMID: 39425325 DOI: 10.1103/physreve.110.l032601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/30/2024] [Indexed: 10/21/2024]
Abstract
Recently, Dijkman et al. [arXiv:2403.15007] proposed training classical neural density functionals via bulk pair-correlation matching. We show their method to be an efficient regularizer for neural functionals based on local learning of inhomogeneous one-body direct correlations [Sammüller et al., Proc. Natl. Acad. Sci. USA 120, e2312484120 (2023)0027-842410.1073/pnas.2312484120]. While Dijkman et al. demonstrated pair-correlation matching of a global neural free-energy functional, we argue in favor of local one-body learning for flexible neural modeling of the full Mermin-Evans density-functional map. Using spatial localization gives access to accurate neural free-energy functionals, including convolutional neural networks, that transcend the training box.
Collapse
|
6
|
Bjola A, Salvalaglio M. Estimating Free-Energy Surfaces and Their Convergence from Multiple, Independent Static and History-Dependent Biased Molecular-Dynamics Simulations with Mean Force Integration. J Chem Theory Comput 2024; 20:5418-5427. [PMID: 38913384 PMCID: PMC11238544 DOI: 10.1021/acs.jctc.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024]
Abstract
Addressing the sampling problem is central to obtaining quantitative insight from molecular dynamics simulations. Adaptive biased sampling methods, such as metadynamics, tackle this issue by perturbing the Hamiltonian of a system with a history-dependent bias potential, enhancing the exploration of the ensemble of configurations and estimating the corresponding free energy surface (FES). Nevertheless, efficiently assessing and systematically improving their convergence remains an open problem. Here, building on mean force integration (MFI), we develop and test a metric for estimating the convergence of FESs obtained by combining asynchronous, independent simulations subject to diverse biasing protocols, including static biases, different variants of metadynamics, and various combinations of static and history-dependent biases. The developed metric and the ability to combine independent simulations granted by MFI enable us to devise strategies to systematically improve the quality of FES estimates. We demonstrate our approach by computing FES and assessing the convergence of a range of systems of increasing complexity, including one- and two-dimensional analytical FESs, alanine dipeptide, a Lennard-Jones supersaturated vapor undergoing liquid droplet nucleation, and the model of a colloidal system crystallizing via a two-step mechanism. The methods presented here can be generally applied to biased simulations and are implemented in pyMFI, a publicly accessible, open-source Python library.
Collapse
Affiliation(s)
- Antoniu Bjola
- Thomas Young Centre and Department
of Chemical Engineering, University College
London, London WC1E 7JE, U.K.
| | - Matteo Salvalaglio
- Thomas Young Centre and Department
of Chemical Engineering, University College
London, London WC1E 7JE, U.K.
| |
Collapse
|
7
|
Sammüller F, Hermann S, Schmidt M. Why neural functionals suit statistical mechanics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:243002. [PMID: 38467072 DOI: 10.1088/1361-648x/ad326f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
We describe recent progress in the statistical mechanical description of many-body systems via machine learning combined with concepts from density functional theory and many-body simulations. We argue that the neural functional theory by Sammülleret al(2023Proc. Natl Acad. Sci.120e2312484120) gives a functional representation of direct correlations and of thermodynamics that allows for thorough quality control and consistency checking of the involved methods of artificial intelligence. Addressing a prototypical system we here present a pedagogical application to hard core particle in one spatial dimension, where Percus' exact solution for the free energy functional provides an unambiguous reference. A corresponding standalone numerical tutorial that demonstrates the neural functional concepts together with the underlying fundamentals of Monte Carlo simulations, classical density functional theory, machine learning, and differential programming is available online athttps://github.com/sfalmo/NeuralDFT-Tutorial.
Collapse
Affiliation(s)
- Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
8
|
Lawrence JE, Lieberherr AZ, Fletcher T, Manolopoulos DE. Fast Quasi-Centroid Molecular Dynamics for Water and Ice. J Phys Chem B 2023; 127:9172-9180. [PMID: 37830934 PMCID: PMC10614180 DOI: 10.1021/acs.jpcb.3c05028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Indexed: 10/14/2023]
Abstract
We describe how the fast quasi-centroid molecular dynamics (f-QCMD) method can be applied to condensed-phase systems by approximating the quasi-centroid potential of mean force as a sum of inter- and intramolecular corrections to the classical interaction potential. The corrections are found by using a regularized iterative Boltzmann inversion procedure to recover the inter- and intramolecular quasi-centroid distribution functions obtained from a path integral molecular dynamics simulation. The resulting methodology is found to give good agreement with a previously published QCMD dipole absorption spectrum for liquid water and satisfactory agreement for ice. It also gives good agreement with spectra from a recent implementation of CMD that uses a precomputed elevated temperature potential of mean force. Modern centroid molecular dynamics methods, therefore, appear to be reaching a consensus regarding the impact of nuclear quantum effects on the vibrational spectra of water and ice.
Collapse
Affiliation(s)
| | - Annina Z. Lieberherr
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United
Kingdom
| | - Theo Fletcher
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United
Kingdom
| | - David E. Manolopoulos
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United
Kingdom
| |
Collapse
|
9
|
Eckert T, Stuhlmüller NCX, Sammüller F, Schmidt M. Local measures of fluctuations in inhomogeneous liquids: statistical mechanics and illustrative applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:425102. [PMID: 37414000 DOI: 10.1088/1361-648x/ace50c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
We show in detail how three one-body fluctuation profiles, namely the local compressibility, the local thermal susceptibility, and the reduced density, can be obtained from a statistical mechanical many-body description of classical particle-based systems. We present several different and equivalent routes to the definition of each fluctuation profile, facilitating their explicit numerical calculation in inhomogeneous equilibrium systems. This underlying framework is used for the derivation of further properties such as hard wall contact theorems and novel types of inhomogeneous one-body Ornstein-Zernike equations. The practical accessibility of all three fluctuation profiles is exemplified by grand canonical Monte Carlo simulations that we present for hard sphere, Gaussian core and Lennard-Jones fluids in confinement.
Collapse
Affiliation(s)
- Tobias Eckert
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Nico C X Stuhlmüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
10
|
Sammüller F, Hermann S, de Las Heras D, Schmidt M. Noether-Constrained Correlations in Equilibrium Liquids. PHYSICAL REVIEW LETTERS 2023; 130:268203. [PMID: 37450808 DOI: 10.1103/physrevlett.130.268203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Liquid structure carries deep imprints of an inherent thermal invariance against a spatial transformation of the underlying classical many-body Hamiltonian. At first order in the transformation field Noether's theorem yields the local force balance. Three distinct two-body correlation functions emerge at second order, namely the standard two-body density, the localized force-force correlation function, and the localized force gradient. An exact Noether sum rule interrelates these correlators. Simulations of Lennard-Jones, Yukawa, soft-sphere dipolar, Stockmayer, Gay-Berne and Weeks-Chandler-Andersen liquids, of monatomic water and of a colloidal gel former demonstrate the fundamental role in the characterization of spatial structure.
Collapse
Affiliation(s)
- Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
11
|
de Las Heras D, Zimmermann T, Sammüller F, Hermann S, Schmidt M. Perspective: How to overcome dynamical density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:271501. [PMID: 37023762 DOI: 10.1088/1361-648x/accb33] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
We argue in favour of developing a comprehensive dynamical theory for rationalizing, predicting, designing, and machine learning nonequilibrium phenomena that occur in soft matter. To give guidance for navigating the theoretical and practical challenges that lie ahead, we discuss and exemplify the limitations of dynamical density functional theory (DDFT). Instead of the implied adiabatic sequence of equilibrium states that this approach provides as a makeshift for the true time evolution, we posit that the pending theoretical tasks lie in developing a systematic understanding of the dynamical functional relationships that govern the genuine nonequilibrium physics. While static density functional theory gives a comprehensive account of the equilibrium properties of many-body systems, we argue that power functional theory is the only present contender to shed similar insights into nonequilibrium dynamics, including the recognition and implementation of exact sum rules that result from the Noether theorem. As a demonstration of the power functional point of view, we consider an idealized steady sedimentation flow of the three-dimensional Lennard-Jones fluid and machine-learn the kinematic map from the mean motion to the internal force field. The trained model is capable of both predicting and designing the steady state dynamics universally for various target density modulations. This demonstrates the significant potential of using such techniques in nonequilibrium many-body physics and overcomes both the conceptual constraints of DDFT as well as the limited availability of its analytical functional approximations.
Collapse
Affiliation(s)
- Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Toni Zimmermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
12
|
Renner J, Schmidt M, de Las Heras D. Reduced-variance orientational distribution functions from torque sampling. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:235901. [PMID: 36974000 DOI: 10.1088/1361-648x/acc522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
We introduce a method to sample the orientational distribution function in computer simulations. The method is based on the exact torque balance equation for classical many-body systems of interacting anisotropic particles in equilibrium. Instead of the traditional counting of events, we reconstruct the orientational distribution function via an orientational integral of the torque acting on the particles. We test the torque sampling method in two- and three-dimensions, using both Langevin dynamics and overdamped Brownian dynamics, and with two interparticle interaction potentials. In all cases the torque sampling method produces profiles of the orientational distribution function with better accuracy than those obtained with the traditional counting method. The accuracy of the torque sampling method is independent of the bin size, and hence it is possible to resolve the orientational distribution function with arbitrarily small angular resolutions.
Collapse
Affiliation(s)
- Johannes Renner
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
13
|
Sammüller F, Hermann S, Schmidt M. Comparative study of force-based classical density functional theory. Phys Rev E 2023; 107:034109. [PMID: 37072997 DOI: 10.1103/physreve.107.034109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 04/20/2023]
Abstract
We reexamine results obtained with the recently proposed density functional theory framework based on forces (force-DFT) [S. M. Tschopp et al., Phys. Rev. E 106, 014115 (2022)2470-004510.1103/PhysRevE.106.014115]. We compare inhomogeneous density profiles for hard sphere fluids to results from both standard density functional theory and from computer simulations. Test situations include the equilibrium hard sphere fluid adsorbed against a planar hard wall and the dynamical relaxation of hard spheres in a switched harmonic potential. The comparison to grand canonical Monte Carlo simulation profiles shows that equilibrium force-DFT alone does not improve upon results obtained with the standard Rosenfeld functional. Similar behavior holds for the relaxation dynamics, where we use our event-driven Brownian dynamics data as benchmark. Based on an appropriate linear combination of standard and force-DFT results, we investigate a simple hybrid scheme which rectifies these deficiencies in both the equilibrium and the dynamical case. We explicitly demonstrate that although the hybrid method is based on the original Rosenfeld fundamental measure functional, its performance is comparable to that of the more advanced White Bear theory.
Collapse
Affiliation(s)
- Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
14
|
Sammüller F, de Las Heras D, Schmidt M. Inhomogeneous steady shear dynamics of a three-body colloidal gel former. J Chem Phys 2023; 158:054908. [PMID: 36754804 DOI: 10.1063/5.0130655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We investigate the stationary flow of a colloidal gel under an inhomogeneous external shear force using adaptive Brownian dynamics simulations. The interparticle forces are derived from the Stillinger-Weber potential, where the three-body term is tuned to enable network formation and gelation in equilibrium. When subjected to the shear force field, the system develops remarkable modulations in the one-body density profile. Depending on the shear magnitude, particles accumulate either in quiescent regions or in the vicinity of maximum net flow, and we deduce this strong non-equilibrium response to be characteristic of the gel state. Studying the components of the internal force parallel and perpendicular to the flow direction reveals that the emerging flow and structure of the stationary state are driven by significant viscous and structural superadiabatic forces. Thereby, the magnitude and nature of the observed non-equilibrium phenomena differ from the corresponding behavior of simple fluids. We demonstrate that a simple power functional theory reproduces accurately the viscous force profile, giving a rationale of the complex dynamical behavior of the system.
Collapse
Affiliation(s)
- Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
15
|
Gao A, Remsing RC, Weeks JD. Local Molecular Field Theory for Coulomb Interactions in Aqueous Solutions. J Phys Chem B 2023; 127:809-821. [PMID: 36669139 DOI: 10.1021/acs.jpcb.2c06988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Coulomb interactions play a crucial role in a wide array of processes in aqueous solutions but present conceptual and computational challenges to both theory and simulations. We review recent developments in an approach addressing these challenges─local molecular field (LMF) theory. LMF theory exploits an exact and physically suggestive separation of intermolecular Coulomb interactions into strong short-range and uniformly slowly varying long-range components. This allows us to accurately determine the averaged effects of the long-range components on the short-range structure using effective single particle fields and analytical corrections, greatly reducing the need for complex lattice summation techniques used in most standard approaches. The simplest use of these ideas in aqueous solutions leads to the short solvent (SS) model, where both solvent-solvent and solute-solvent Coulomb interactions have only short-range components. Here we use the SS model to give a simple description of pairing of nucleobases and biologically relevant ions in water.
Collapse
Affiliation(s)
- Ang Gao
- Department of Physics, Beijing University of Posts and Telecommunications, Beijing, China 100876
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - John D Weeks
- Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
16
|
Tschopp SM, Sammüller F, Hermann S, Schmidt M, Brader JM. Force density functional theory in- and out-of-equilibrium. Phys Rev E 2022; 106:014115. [PMID: 35974621 DOI: 10.1103/physreve.106.014115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
When a fluid is subject to an external field, as is the case near an interface or under spatial confinement, then the density becomes spatially inhomogeneous. Although the one-body density provides much useful information, a higher level of resolution is provided by the two-body correlations. These give a statistical description of the internal microstructure of the fluid and enable calculation of the average interparticle force, which plays an essential role in determining both the equilibrium and dynamic properties of interacting fluids. We present a theoretical framework for the description of inhomogeneous (classical) many-body systems, based explicitly on the two-body correlation functions. By consideration of local Noether-invariance against spatial distortion of the system we demonstrate the fundamental status of the Yvon-Born-Green (YBG) equation as a local force-balance within the fluid. Using the inhomogeneous Ornstein-Zernike equation we show that the two-body correlations are density functionals and, thus, that the average interparticle force entering the YBG equation is also a functional of the one-body density. The force-based theory we develop provides an alternative to standard density functional theory for the study of inhomogeneous systems both in- and out-of-equilibrium. We compare force-based density profiles to the results of the standard potential-based (dynamical) density functional theory. In-equilibrium, we confirm both analytically and numerically that the standard approach yields profiles that are consistent with the compressibility pressure, whereas the force-density functional gives profiles consistent with the virial pressure. For both approaches we explicitly prove the hard-wall contact theorem that connects the value of the density profile at the hard-wall with the bulk pressure. The structure of the theory offers deep insights into the nature of correlation in dense and inhomogeneous systems.
Collapse
Affiliation(s)
- Salomée M Tschopp
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Joseph M Brader
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
17
|
Herrero C, Pauletti M, Tocci G, Iannuzzi M, Joly L. Connection between water's dynamical and structural properties: Insights from ab initio simulations. Proc Natl Acad Sci U S A 2022; 119:e2121641119. [PMID: 35588447 PMCID: PMC9173753 DOI: 10.1073/pnas.2121641119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/12/2022] [Indexed: 01/25/2023] Open
Abstract
SignificanceFirst-principles calculations, which explicitly account for the electronic structure of matter, can shed light on the molecular structure and dynamics of water in its supercooled state. In this work, we use density functional theory, which relies on a functional to describe electronic exchange and correlations, to evaluate which functional best describes the temperature evolution of bulk water transport coefficients. We also assess the validity of the Stokes-Einstein relation for all the functionals in the temperature range studied, and explore the link between structure and dynamics. Based on these results, we show how transport coefficients can be computed from structural descriptors, which require shorter simulation times to converge, and we point toward strategies to develop better functionals.
Collapse
Affiliation(s)
- Cecilia Herrero
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Michela Pauletti
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| | - Gabriele Tocci
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| | - Laurent Joly
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
18
|
Ayaz C, Scalfi L, Dalton BA, Netz RR. Generalized Langevin equation with a nonlinear potential of mean force and nonlinear memory friction from a hybrid projection scheme. Phys Rev E 2022; 105:054138. [PMID: 35706310 DOI: 10.1103/physreve.105.054138] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
We introduce a hybrid projection scheme that combines linear Mori projection and conditional Zwanzig projection techniques and use it to derive a generalized Langevin equation (GLE) for a general interacting many-body system. The resulting GLE includes (i) explicitly the potential of mean force (PMF) that describes the equilibrium distribution of the system in the chosen space of reaction coordinates, (ii) a random force term that explicitly depends on the initial state of the system, and (iii) a memory friction contribution that splits into two parts: a part that is linear in the past reaction-coordinate velocity and a part that is in general nonlinear in the past reaction coordinates but does not depend on velocities. Our hybrid scheme thus combines all desirable properties of the Zwanzig and Mori projection schemes. The nonlinear memory friction contribution is shown to be related to correlations between the reaction-coordinate velocity and the random force. We present a numerical method to compute all parameters of our GLE, in particular the nonlinear memory friction function and the random force distribution, from a trajectory in reaction coordinate space. We apply our method on the dihedral-angle dynamics of a butane molecule in water obtained from atomistic molecular dynamics simulations. For this example, we demonstrate that nonlinear memory friction is present and that the random force exhibits significant non-Gaussian corrections. We also present the derivation of the GLE for multidimensional reaction coordinates that are general functions of all positions in the phase-space of the underlying many-body system; this corresponds to a systematic coarse-graining procedure that preserves not only the correct equilibrium behavior but also the correct dynamics of the coarse-grained system.
Collapse
Affiliation(s)
- Cihan Ayaz
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Laura Scalfi
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Benjamin A Dalton
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
19
|
Abstract
A framework for performant Brownian Dynamics (BD) many-body simulations with adaptive timestepping is presented. Contrary to the Euler-Maruyama scheme in common non-adaptive BD, we employ an embedded Heun-Euler integrator for the propagation of the overdamped coupled Langevin equations of motion. This enables the derivation of a local error estimate and the formulation of criteria for the acceptance or rejection of trial steps and for the control of optimal stepsize. Introducing erroneous bias in the random forces is avoided by rejection sampling with memory due to Rackauckas and Nie, which makes use of the Brownian bridge theorem and guarantees the correct generation of a specified random process even when rejecting trial steps. For test cases of Lennard-Jones fluids in bulk and in confinement, it is shown that adaptive BD solves performance and stability issues of conventional BD, already outperforming the latter even in standard situations. We expect this novel computational approach to BD to be especially helpful in long-time simulations of complex systems, e.g., in non-equilibrium, where concurrent slow and fast processes occur.
Collapse
Affiliation(s)
- Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
20
|
Coles SW, Mangaud E, Frenkel D, Rotenberg B. Reduced variance analysis of molecular dynamics simulations by linear combination of estimators. J Chem Phys 2021; 154:191101. [PMID: 34240909 DOI: 10.1063/5.0053737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Building upon recent developments of force-based estimators with a reduced variance for the computation of densities, radial distribution functions, or local transport properties from molecular simulations, we show that the variance can be further reduced by considering optimal linear combinations of such estimators. This control variates approach, well known in statistics and already used in other branches of computational physics, has been comparatively much less exploited in molecular simulations. We illustrate this idea on the radial distribution function and the one-dimensional density of a bulk and confined Lennard-Jones fluid, where the optimal combination of estimators is determined for each distance or position, respectively. In addition to reducing the variance everywhere at virtually no additional cost, this approach cures an artifact of the initial force-based estimators, namely, small but non-zero values of the quantities in regions where they should vanish. Beyond the examples considered here, the present work highlights, more generally, the underexplored potential of control variates to estimate observables from molecular simulations.
Collapse
Affiliation(s)
- S W Coles
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, United Kingdom
| | - E Mangaud
- MSME, Université Gustave Eiffel, UPEC, CNRS, F-77454 Marne-la-Vallée, France
| | - D Frenkel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - B Rotenberg
- Physicochimie des électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, CNRS, F-75005 Paris, France
| |
Collapse
|
21
|
Sutherland BJ, Moore WHD, Manolopoulos DE. Nuclear quantum effects in thermal conductivity from centroid molecular dynamics. J Chem Phys 2021; 154:174104. [PMID: 34241048 DOI: 10.1063/5.0051663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show that the centroid molecular dynamics (CMD) method provides a realistic way to calculate the thermal diffusivity a = λ/ρcV of a quantum mechanical liquid such as para-hydrogen. Once a has been calculated, the thermal conductivity can be obtained from λ = ρcVa, where ρ is the density of the liquid and cV is the constant-volume heat capacity. The use of this formula requires an accurate quantum mechanical heat capacity cV, which can be obtained from a path integral molecular dynamics simulation. The thermal diffusivity can be calculated either from the decay of the equilibrium density fluctuations in the liquid or by using the Green-Kubo relation to calculate the CMD approximation to λ and then dividing this by the corresponding approximation to ρcV. We show that both approaches give the same results for liquid para-hydrogen and that these results are in good agreement with the experimental measurements of the thermal conductivity over a wide temperature range. In particular, they correctly predict a decrease in the thermal conductivity at low temperatures-an effect that stems from the decrease in the quantum mechanical heat capacity and has eluded previous para-hydrogen simulations. We also show that the method gives equally good agreement with the experimental measurements for the thermal conductivity of normal liquid helium.
Collapse
Affiliation(s)
- Benjamin J Sutherland
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - William H D Moore
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David E Manolopoulos
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|