1
|
Muñiz‐Chicharro A, Votapka LW, Amaro RE, Wade RC. Brownian dynamics simulations of biomolecular diffusional association processes. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Abraham Muñiz‐Chicharro
- Molecular and Cellular Modeling Group Heidelberg Institute for Theoretical Studies (HITS) Heidelberg Germany
- Faculty of Biosciences and Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences (HGS MathComp) Heidelberg University Heidelberg Germany
| | | | | | - Rebecca C. Wade
- Molecular and Cellular Modeling Group Heidelberg Institute for Theoretical Studies (HITS) Heidelberg Germany
- Center for Molecular Biology (ZMBH), DKFZ‐ZMBH Alliance, and Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University Heidelberg Germany
| |
Collapse
|
2
|
Karpińska A, Pilz M, Buczkowska J, Żuk PJ, Kucharska K, Magiera G, Kwapiszewska K, Hołyst R. Quantitative analysis of biochemical processes in living cells at a single-molecule level: a case of olaparib-PARP1 (DNA repair protein) interactions. Analyst 2021; 146:7131-7143. [PMID: 34726203 DOI: 10.1039/d1an01769a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantitative description of biochemical processes inside living cells and at single-molecule levels remains a challenge at the forefront of modern instrumentation and spectroscopy. This paper demonstrates such single-cell, single-molecule analyses performed to study the mechanism of action of olaparib - an up-to-date, FDA-approved drug for germline-BRCA mutated metastatic breast cancer. We characterized complexes formed with PARPi-FL - fluorescent analog of olaparib in vitro and in cancer cells using the advanced fluorescent-based method: Fluorescence Correlation Spectroscopy (FCS) combined with a length-scale dependent cytoplasmic/nucleoplasmic viscosity model. We determined in vitro olaparib-PARP1 equilibrium constant (6.06 × 108 mol L-1). In the cell nucleus, we distinguished three states of olaparib: freely diffusing drug (24%), olaparib-PARP1 complex (50%), and olaparib-PARP1-RNA complex (26%). We show olaparib accumulation in 3D spheroids, where intracellular concentration is twofold higher than in 2D cells. Moreover, olaparib concentration was tenfold higher (506 nmol L-1vs. 57 nmol L-1) in cervical cancer (BRCA1 high abundance) than in breast cancer cells (BRCA1 low abundance) but with a lower toxic effect. Thus we confirmed that the amount of BRCA1 protein in the cells is a better predictor of the therapeutic effect of olaparib than its penetration into cancer tissue. Our single-molecule and single-cell approach give a new perspective of drug action in living cells. FCS provides a detailed in vivo insight, valuable in drug development and targeting.
Collapse
Affiliation(s)
- Aneta Karpińska
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Marta Pilz
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Joanna Buczkowska
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Paweł J Żuk
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland. .,Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Karolina Kucharska
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Gaweł Magiera
- Department of Medicine, Poznan University of Medical Sciences, 60-356, Poznan, Poland
| | - Karina Kwapiszewska
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Robert Hołyst
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|