1
|
Singh R, Seo J, Ryu J, Choi JH. Unraveling the interplay of temperature with molecular aggregation and miscibility in TEA-water mixtures. Phys Chem Chem Phys 2024; 26:18970-18982. [PMID: 38953296 DOI: 10.1039/d4cp02238f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In the phase diagram of binary liquid mixtures, a miscibility gap is found with the concomitant liquid-liquid phase separation, wherein temperature is a key parameter in modulating the phase behavior. This includes critical temperatures such as the lower critical solution temperature (LCST) and upper critical solution temperature (UCST). Using a comprehensive approach including molecular dynamics (MD) simulation, graph theoretical analysis and spatial inhomogeneity measurement in an LCST-type mixture, we attempt to establish the relationship between the molecular aggregation pattern and phase behavior in TEA-water mixtures. At lower temperatures of binary liquid mixtures, TEA molecules tend to aggregate while simultaneously interacting with water forming a homogeneous solution. As the temperature increases, these TEA aggregates tend to self-associate by minimizing the interaction with water, which facilitates formation of two distinct liquid phases in the binary liquid. The spatial distribution analysis also reveals that the TEA aggregates compatible with water promote uniform distribution of water molecules, maintaining a homogeneous solution, while the water-incompatible ones generate isolation of water H-bond aggregates, leading to liquid-liquid phase separation in the binary system. This current study on temperature-induced molecular aggregation behavior is anticipated to contribute to a critical understanding of the phase behavior in binary liquid mixtures, including UCST, LCST, and reentrant phase behavior.
Collapse
Affiliation(s)
- Ravi Singh
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jonghyuk Ryu
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
2
|
Zhou S, Sun Q, Zhang H, Meng H, Gao Q, Zhou Y. Elemental dissolution characteristics of granite and gabbro under high-temperature water-rock interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165455. [PMID: 37442477 DOI: 10.1016/j.scitotenv.2023.165455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
In the process of developing hot dry rock (HDR) through enhanced geothermal systems (EGS), it is necessary to inject circulating water to complete thermal energy extraction. However, the injected water will react with the high-temperature rock and produce mineral dissolution, which can destroy the artificial reservoir and affect the development of geothermal energy. To explore the influence of temperature on the solution composition and mineral dissolution after water-rock reaction, this study conducted water-rock interaction experiments on gabbro and granite at different heat treatment temperatures. Subsequently, the changes of solution composition and mineral dissolution with temperature after the reaction were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and XRD. The results demonstrated that Si, Na, Ca, K, Al, and Mg did not enter the aqueous solution at the same dissolution rate. Si was the primary solute in the solution, mainly resulting from the dissolution of quartz, and the dissolution rates of metallic elements were lower. In the granite-water interaction system, metallic elements such as Na, K, Ca, and Al showed a tendency to enter the solution at low temperatures, i.e., 150-180 °C, and the dissolution rate of Si reached its peak when the water was close to the supercritical state. With the increase in temperature, the dissolution rates of Si and metallic elements showed an initial increasing trend followed by a decrease. When water is in the subcritical to the supercritical state, abrupt fluctuations in the physical properties of water can strongly affect the dissolution of minerals or rocks. The results of this study provide insights into rock corrosion fatigue and mineral scaling in EGS water environment.
Collapse
Affiliation(s)
- Shutao Zhou
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| | - Qiang Sun
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation,Xi'an, Shaanxi 710054, China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an, Shaanxi, China.
| | - He Zhang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
| | - He Meng
- Xinjiang Key Laboratory of Geohazard Prevention, Xinjiang Institute of Engineering, Urumqi, Xinjiang, 830023, China.
| | - Qian Gao
- College of New Energy, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China.
| | - Yang Zhou
- Shaanxi Institute of Geological Survey, Xi'an, Shaanxi, 710054, China; Institute of Advanced Studies, China University of Geosciences, Wuhan, Hubei, 430078, China
| |
Collapse
|
3
|
Nishimura Y, Nakai H. Species-selective nanoreactor molecular dynamics simulations based on linear-scaling tight-binding quantum chemical calculations. J Chem Phys 2023; 158:054106. [PMID: 36754823 DOI: 10.1063/5.0132573] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Here, extensions to quantum chemical nanoreactor molecular dynamics simulations for discovering complex reactive events are presented. The species-selective algorithm, where the nanoreactor effectively works for the selected desired reactants, was introduced to the original scheme. Moreover, for efficient simulations of large model systems with the modified approach, the divide-and-conquer linear-scaling density functional tight-binding method was exploited. Two illustrative applications of the polymerization of propylene and cyclopropane mixtures and the aggregation of sodium chloride from aqueous solutions indicate that species-selective quantum chemical nanoreactor molecular dynamics is a promising method to accelerate the sampling of multicomponent chemical processes proceeding under relatively mild conditions.
Collapse
Affiliation(s)
- Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
4
|
Polidori A, Rowlands RF, Zeidler A, Salanne M, Fischer HE, Annighöfer B, Klotz S, Salmon PS. Structure and dynamics of aqueous NaCl solutions at high temperatures and pressures. J Chem Phys 2021; 155:194506. [PMID: 34800945 DOI: 10.1063/5.0067166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structure of a concentrated solution of NaCl in D2O was investigated by in situ high-pressure neutron diffraction with chlorine isotope substitution to give site-specific information on the coordination environment of the chloride ion. A broad range of densities was explored by first increasing the temperature from 323 to 423 K at 0.1 kbar and then increasing the pressure from 0.1 to 33.8 kbar at 423 K, thus mapping a cyclic variation in the static dielectric constant of the pure solvent. The experimental work was complemented by molecular dynamics simulations using the TIP4P/2005 model for water, which were validated against the measured equation of state and diffraction results. Pressure-induced anion ordering is observed, which is accompanied by a dramatic increase in the Cl-O and O-O coordination numbers. With the aid of bond-distance resolved bond-angle maps, it is found that the increased coordination numbers do not originate from a sizable alteration to the number of either Cl⋯D-O or O⋯D-O hydrogen bonds but from the appearance of non-hydrogen-bonded configurations. Increased pressure leads to a marked decrease in the self-diffusion coefficients but has only a moderate effect on the ion-water residence times. Contact ion pairs are observed under all conditions, mostly in the form of charge-neutral NaCl0 units, and coexist with solvent-separated Na+-Na+ and Cl--Cl- ion pairs. The exchange of water molecules with Na+ adopts a concerted mechanism under ambient conditions but becomes non-concerted as the state conditions are changed. Our findings are important for understanding the role of extreme conditions in geochemical processes.
Collapse
Affiliation(s)
- Annalisa Polidori
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Ruth F Rowlands
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Anita Zeidler
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Mathieu Salanne
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| | - Henry E Fischer
- Institut Laue Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Burkhard Annighöfer
- Université Paris-Saclay, Laboratoire Léon Brillouin, CEA-CNRS, Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Stefan Klotz
- Sorbonne Université, UMR 7590, IMPMC, F-75252 Paris, France
| | - Philip S Salmon
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
5
|
Elbers M, Schmidt C, Sternemann C, Sahle CJ, Jahn S, Albers C, Sakrowski R, Gretarsson H, Sundermann M, Tolan M, Wilke M. Ion association in hydrothermal aqueous NaCl solutions: implications for the microscopic structure of supercritical water. Phys Chem Chem Phys 2021; 23:14845-14856. [PMID: 34223594 DOI: 10.1039/d1cp01490k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Knowledge of the microscopic structure of fluids and changes thereof with pressure and temperature is important for the understanding of chemistry and geochemical processes. In this work we investigate the influence of sodium chloride on the hydrogen-bond network in aqueous solution up to supercritical conditions. A combination of in situ X-ray Raman scattering and ab initio molecular dynamics simulations is used to probe the oxygen K-edge of the alkali halide aqueous solution in order to obtain unique information about the oxygen's local coordination around the ions, e.g. solvation-shell structure and the influence of ion pairing. The measured spectra exhibit systematic temperature dependent changes, which are entirely reproduced by calculations on the basis of structural snapshots obtained via ab initio molecular dynamics simulations. Analysis of the simulated trajectories allowed us to extract detailed structural information. This combined analysis reveals a net destabilizing effect of the dissolved ions which is reduced with rising temperature. The observed increased formation of contact ion pairs and occurrence of larger polyatomic clusters at higher temperatures can be identified as a driving force behind the increasing structural similarity between the salt solution and pure water at elevated temperatures and pressures with drawback on the role of hydrogen bonding in the hot fluid. We discuss our findings in view of recent results on hot NaOH and HCl aqueous fluids and emphasize the importance of ion pairing in the interpretation of the microscopic structure of water.
Collapse
Affiliation(s)
- Mirko Elbers
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44227 Dortmund, Germany.
| | - Christian Schmidt
- Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, D-14473 Potsdam, Germany
| | - Christian Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44227 Dortmund, Germany.
| | - Christoph J Sahle
- European Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France
| | - Sandro Jahn
- Institut für Geologie und Mineralogie, Universität zu Köln, D-50674 Cologne, Germany
| | - Christian Albers
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44227 Dortmund, Germany.
| | - Robin Sakrowski
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44227 Dortmund, Germany.
| | - Hlynur Gretarsson
- Deutsches Elektronen-Synchrotron DESY, D-22607, Hamburg, Germany and Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany
| | - Martin Sundermann
- Deutsches Elektronen-Synchrotron DESY, D-22607, Hamburg, Germany and Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany
| | - Metin Tolan
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44227 Dortmund, Germany.
| | - Max Wilke
- Institut für Geowissenschaften, Universität Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
6
|
Jing Z, Liu C, Ren P. Advanced Electrostatic Model for Monovalent Ions Based on Ab Initio Energy Decomposition. J Chem Inf Model 2021; 61:2806-2817. [PMID: 34096706 PMCID: PMC8323402 DOI: 10.1021/acs.jcim.1c00426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ions play important roles in the structures and functions of biomolecules. In biomolecular simulations, ions either directly interact with biomolecules or provide an ionic environment that influences electrostatic interactions of solutes. The AMOEBA+ water model has demonstrated significant advancement of the classical force field for describing molecular interactions due to its improvements on the functional forms to account for essential physics. This work expands the applicability of the AMOEBA+ model toward alkali metal (Li, Na, K, Rb, and Cs) and halogen (F, Cl, Br, and I) ions. Various quantum chemical data on ion-ion and ion-water interactions, experimental ion hydration free energies, and lattice energies of salt crystals are used in the parametrization. The final parameters are verified with other properties outside of the parametrization data, including lattice energies of additional salt crystals and ionic activity coefficients in solution. The new model captures a wide range of ion properties from the gas phase to solution phase and crystals. More importantly, AMOEBA+ provides energy components that are consistent with ab initio energy decomposition. Thus, we expect AMOEBA+ to be more general, transferable, and valuable for the interpretation of intermolecular forces in efficient classical simulations.
Collapse
Affiliation(s)
- Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|