Yamada A. Molecular Simulation Study of Surface-Enhanced Raman Scattering of Liquid Water.
J Phys Chem A 2024;
128:51-61. [PMID:
38127813 DOI:
10.1021/acs.jpca.3c05027]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We developed in our previous study [J. Chem. Phys., 2021, 155, 174118, J. Phys. Chem. A, 2022, 126, 4762] a classical electronic and molecular dynamics simulation method to describe the optical response of metal material in solution based on an atomistic model by incorporating the classical equation of motion for free electrons under an applied electric field. To show further usefulness of the method, in the present study, we apply it to surface-enhanced Raman scattering of liquid water to examine the signal enhancement of the solution system caused by plasmon resonance effects of a silver nanoparticle.
Collapse