1
|
Gao X, Gan Z. Broken symmetries in quasi-2D charged systems via negative dielectric confinement. J Chem Phys 2024; 161:011102. [PMID: 38949579 DOI: 10.1063/5.0214523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
We report spontaneous symmetry breaking (SSB) phenomena in symmetrically charged binary particle systems under planar nanoconfinement with negative dielectric constants. The SSB is triggered solely via the dielectric confinement effect, without any external fields. The mechanism of SSB is found to be caused by the strong polarization field enhanced by nanoconfinement, giving rise to charge/field oscillations in the transverse directions. Interestingly, dielectric contrast can even determine the degree of SSB in transverse and longitudinal dimensions, forming charge-separated interfacial liquids and clusters on square lattices. Furthermore, we analytically show that the formed lattice constant is determined by the dielectric mismatch and the length scale of confinement, which is validated via molecular dynamics simulations. The novel broken symmetry mechanism may provide new insights into the study of quasi-2D systems and the design of future nanodevices.
Collapse
Affiliation(s)
- Xuanzhao Gao
- Thrust of Advanced Materials, and Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, China
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zecheng Gan
- Thrust of Advanced Materials, and Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, China
- Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
2
|
Pan C. A formula and numerical study on Ewald 1D summation. J Comput Chem 2023; 44:902-911. [PMID: 36479716 DOI: 10.1002/jcc.27051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/23/2022] [Accepted: 11/13/2022] [Indexed: 12/13/2022]
Abstract
Ewald summation is famous for its successful applications in molecular simulations for systems under 2 dimensional periodic boundary condition (2D PBC, e.g., planar interfaces) and systems under 3D PBC (e.g., bulk). However, the extension to systems under 1D PBC (like porous structures and tubes) is largely hindered by the special functions in the formula. In this work, a simple approximation of Ewald 1D sum is introduced with its error rigorously controlled. To investigate the impacts on the efficiency and accuracy by different parts, a pairwise potential is calculated for a series of screening parameters ( α ) and radial distances ( ρ ) between two point charges. A mapping between the sum of trigonometric functions in Ewald 1D method and the sum of specific vectors further reveals the different converging speeds of different Fourier parts. When choosing α = 0.2 Å-1 , it is appropriate to ignore the insignificant parts in the sum to accelerate the method.
Collapse
Affiliation(s)
- Cong Pan
- College of Data Science, Jiaxing University, Jiaxing, China
| |
Collapse
|
3
|
Hoang Ngoc Minh T, Stoltz G, Rotenberg B. Frequency and field-dependent response of confined electrolytes from Brownian dynamics simulations. J Chem Phys 2023; 158:104103. [PMID: 36922117 DOI: 10.1063/5.0139258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Using Brownian dynamics simulations, we investigate the effects of confinement, adsorption on surfaces, and ion-ion interactions on the response of confined electrolyte solutions to oscillating electric fields in the direction perpendicular to the confining walls. Nonequilibrium simulations allows to characterize the transitions between linear and nonlinear regimes when varying the magnitude and frequency of the applied field, but the linear response, characterized by the frequency-dependent conductivity, is more efficiently predicted from the equilibrium current fluctuations. To that end, we (rederive and) use the Green-Kubo relation appropriate for overdamped dynamics, which differs from the standard one for Newtonian or underdamped Langevin dynamics. This expression highlights the contributions of the underlying Brownian fluctuations and of the interactions of the particles between them and with external potentials. Although already known in the literature, this relation has rarely been used to date, beyond the static limit to determine the effective diffusion coefficient or the DC conductivity. The frequency-dependent conductivity always decays from a bulk-like behavior at high frequency to a vanishing conductivity at low frequency due to the confinement of the charge carriers by the walls. We discuss the characteristic features of the crossover between the two regimes, most importantly how the crossover frequency depends on the confining distance and the salt concentration, and the fact that adsorption on the walls may lead to significant changes both at high and low frequencies. Conversely, our results illustrate the possibility to obtain information on diffusion between walls, charge relaxation, and adsorption by analyzing the frequency-dependent conductivity.
Collapse
Affiliation(s)
- Thê Hoang Ngoc Minh
- CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005 Paris, France
| | | | - Benjamin Rotenberg
- CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005 Paris, France
| |
Collapse
|
4
|
Liang J, Xu Z, Zhao Y. Improved Random Batch Ewald Method in Molecular Dynamics Simulations. J Phys Chem A 2022; 126:3583-3593. [PMID: 35635179 DOI: 10.1021/acs.jpca.2c01918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The random batch Ewald (RBE) is an efficient and accurate method for molecular dynamics (MD) simulations of physical systems at the nano/microscale. The method shows great potential to solve the computational bottleneck of long-range interactions, motivating a necessity to accelerate short-range components of the nonbonded interactions for a further speedup of MD simulations. In this work, we present an improved RBE method for the nonbonding interactions by introducing the random batch idea to constructing neighbor lists for the treatment of both the short-range part of the Ewald splitting and the Lennard-Jones potential. The efficiency that the novel neighbor list algorithm owes to the stochastic minibatch strategy can significantly reduce the total number of neighbors. We obtain the error estimate and convergence by theoretical analysis and implement the improved RBE method in the LAMMPS package. Benchmark simulations are performed to demonstrate the accuracy and stability of the algorithm. Numerical tests on computer performance by conducting large-scaled MD simulations for systems including up to 0.1 billion water molecules are run on massive clusters with up to 50000 CPU cores, demonstrating the attractive features such as the high parallel scalability and memory-saving of the method in comparison to the existing methods.
Collapse
Affiliation(s)
- Jiuyang Liang
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenli Xu
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,MOE-LSC, CMA-Shanghai and Shanghai Center for Applied Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zhao
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Hu Z. The symmetry-preserving mean field condition for electrostatic correlations in bulk. J Chem Phys 2022; 156:034111. [DOI: 10.1063/5.0078007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Zhonghan Hu
- Qingdao Institute for Theoretical and Computational Sciences (QiTCS), Shandong University, Qingdao 266237, People’s Republic of China and Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, People’s Republic of China
| |
Collapse
|
6
|
Liang J, Tan P, Zhao Y, Li L, Jin S, Hong L, Xu Z. Superscalability of the random batch Ewald method. J Chem Phys 2022; 156:014114. [PMID: 34998342 DOI: 10.1063/5.0073424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Coulomb interaction, following an inverse-square force-law, quantifies the amount of force between two stationary and electrically charged particles. The long-range nature of Coulomb interactions poses a major challenge to molecular dynamics simulations, which are major tools for problems at the nano-/micro-scale. Various algorithms are developed to calculate the pairwise Coulomb interactions to a linear scale, but poor scalability limits the size of simulated systems. Here, we use an efficient molecular dynamics algorithm with the random batch Ewald method on all-atom systems where the complete Fourier components in the Coulomb interaction are replaced by randomly selected mini-batches. By simulating the N-body systems up to 108 particles using 10 000 central processing unit cores, we show that this algorithm furnishes O(N) complexity, almost perfect scalability, and an order of magnitude faster computational speed when compared to the existing state-of-the-art algorithms. Further examinations of our algorithm on distinct systems, including pure water, a micro-phase separated electrolyte, and a protein solution, demonstrate that the spatiotemporal information on all time and length scales investigated and thermodynamic quantities derived from our algorithm are in perfect agreement with those obtained from the existing algorithms. Therefore, our algorithm provides a promising solution on scalability of computing the Coulomb interaction. It is particularly useful and cost-effective to simulate ultra-large systems, which is either impossible or very costly to conduct using existing algorithms, and thus will be beneficial to a broad range of problems at nano-/micro-scales.
Collapse
Affiliation(s)
- Jiuyang Liang
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Tan
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yue Zhao
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Li
- School of Mathematical Sciences, Institute of Natural Sciences and MoE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi Jin
- School of Mathematical Sciences, Institute of Natural Sciences and MoE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhenli Xu
- School of Mathematical Sciences, Institute of Natural Sciences and MoE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Yuan J, Wang Y. Conformation and Ionization Behavior of Charge-Regulating Polyelectrolyte Brushes in a Poor Solvent. J Phys Chem B 2021; 125:10589-10596. [PMID: 34494845 DOI: 10.1021/acs.jpcb.1c04451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Understanding the structural response of weak polyelectrolyte brushes upon external stimuli is crucial for their applications ranging from modifying surface properties to the development of smart and intelligent materials. In this work, coarse-grained molecular dynamics simulations were carried out to investigate the conformation and ionization behavior of charge-regulating polyelectrolyte brushes under poor solvent conditions, using an implicit solvent model. The results show that, while the thickness of a sparse polyelectrolyte brush shows a similar behavior to that of a single chain, namely, a monotonic change as a function of solvent quality (modeled by an effective segment-segment attraction strength parameter) and solution pH, a dense polyelectrolyte brush exhibits more complex behavior. An unexpected reexpansion is observed when the effective segment-segment attraction strength is further increased, especially in the case of a high pH. In the latter case, strong attraction in polymer segments promotes the formation of large, interchain, cylindrical aggregates, leading to an increase in brush thickness.
Collapse
Affiliation(s)
- Jiaxing Yuan
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanwei Wang
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 010000, Kazakhstan.,Laboratory of Computational Materials Science for Energy Applications, Center for Energy and Advanced Materials Science, National Laboratory Astana, 53 Kabanbay Batyr Avenue, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
8
|
Liang J, Yuan J, Luijten E, Xu Z. Harmonic surface mapping algorithm for molecular dynamics simulations of particle systems with planar dielectric interfaces. J Chem Phys 2020; 152:134109. [DOI: 10.1063/5.0003293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jiuyang Liang
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaxing Yuan
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erik Luijten
- Departments of Materials Science and Engineering, Engineering Sciences and Applied Mathematics, Chemistry, and Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | - Zhenli Xu
- School of Mathematical Sciences, Institute of Natural Sciences and MoE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|