1
|
Zhang T, Wang Z, Li S, Zhang X, Su J. Double-Walled Carbon Nanotubes Enable Breakdown of the Trade-off between Ion Selectivity and Water Permeability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27104-27113. [PMID: 39657605 DOI: 10.1021/acs.langmuir.4c04185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Although evidence has been presented for desalination potentials in single-walled carbon nanotubes (SWCNTs), it is still very challenging to overcome the trade-off between ion selectivity and water permeability by simply tuning the carbon nanotube (CNT) size. In this work, we prove that double-walled carbon nanotubes (DWCNTs) can make it. Employing a series of molecular dynamics simulations, we find a striking phenomenon that tuning the combination architecture of DWCNTs can significantly improve the desalination performance, with the salt rejection rate even reaching 100% in some cases while maintaining high levels of water flux. Specifically, under a certain outer CNT (20,20), with the increase in inner CNT radius, the salt rejection rate reaches a maximum for the CNT (9,9), attributed to the small size of the inner CNT and the space between the two CNT walls that significantly impedes the ion passage; however, it still allows the passage of massive water. Furthermore, as the pressure difference increases, the water flux greatly increases, while the salt rejection rate only slightly decreases for the CNTs (8,8) and (9,9), effectively addressing the trade-off between ion selectivity and water permeability. As a result, optimizing the architecture of DWCNTs should be an effective strategy for designing an efficient desalination membrane, which is still a challenge for SWCNTs.
Collapse
Affiliation(s)
- Tao Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zi Wang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuang Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinke Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiaye Su
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
2
|
Li S, Zhang X, Su J. Desalination Performance in Janus Graphene Oxide Channels: Geometric Asymmetry vs Charge Polarity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2659-2671. [PMID: 38166374 DOI: 10.1021/acsami.3c16592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Improving the desalination performance of membranes is always in the spotlight of scientific research; however, Janus channels with polarized surface charge as nanofiltration membranes are still unexplored. In this work, using molecular dynamics simulations, we demonstrate that Janus graphene oxide (GO) channels with appropriate geometry and surface charge can serve as highly efficient nanofiltration membranes. We observe that the water permeability of symmetric Janus GO channels is significantly superior to that of asymmetric channels without sacrificing much ion rejection, owing to weakened ion blockage and electrostatic effects. Furthermore, in symmetric Janus GO channels, the transport of water and ions is sensitive to the charge polarity of the channel inner surface, which is realized by tuning the ratio of cationic and anionic functionalization. Specifically, with the increase in cationic functionalization, the water flux decreases monotonously, while ion rejection displays an interesting maximum behavior that indicates desalination optimization. Moreover, the trade-off between water permeability and ion rejection suggests that the Janus GO channels have an excellent desalination potential and are highly tunable according to the specific water treatment requirements. Our work sheds light on the key role of channel geometry and charge polarity in the desalination performance of Janus GO channels, which paves the way for the design of novel desalination devices.
Collapse
Affiliation(s)
- Shuang Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinke Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiaye Su
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
3
|
Zhao G, Gao H, Qu Z, Fan H, Meng H. Anhydrous interfacial polymerization of sub-1 Å sieving polyamide membrane. Nat Commun 2023; 14:7624. [PMID: 37993445 PMCID: PMC10665378 DOI: 10.1038/s41467-023-43291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Highly permeable polyamide (PA) membrane capable of precise ionic sieving can be utilized for many energy-efficient chemical separations. To fulfill this target, it is crucial to innovate membrane-forming process to induce a narrow pore-size distribution. Herein, we report an anhydrous interfacial polymerization (AIP) at a solid-liquid interface where the amine layer sublimated is in direct contact with the alkane containing acyl chlorides. In such a heterophase interface, water-caused side reactions are eliminated, and the amines in compact arrangement enable an intensive and orderly IP reaction, leading to a unique PA layer with an ionic sieving accuracy of 0.5 Å. The AIP-PA membrane demonstrates excellent separation selectivities of monovalent and divalent cations such as Mg2+/Li+ (78.3) and anions such as Cl-/SO42- (29.2) together with a high water flux up to 13.6 L m-2 h-1 bar-1. Our AIP strategy may provide inspirations for engineering high-precision PA membranes available in various advanced separations.
Collapse
Affiliation(s)
- Guangjin Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Haiqi Gao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, PR China
| | - Zhou Qu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hongwei Fan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Hong Meng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, PR China.
| |
Collapse
|
4
|
Han X, Dang M, Gao H, Lu W, Tao J, Wu J, Chen D, Zhao J, Su X, Teng Z. Hierarchically organized gold nanoparticles by lecithin-directed mineralization approach. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Zhang X, Li S, Su J. Enhanced Ion Rejection in Carbon Nanotubes by a Lateral Electric Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10065-10074. [PMID: 35921520 DOI: 10.1021/acs.langmuir.2c01780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reverse osmosis membranes hold great promise for dealing with global water scarcity. However, the trade-off between ion selectivity and water permeability is a serious obstacle to desalination. Herein, we introduce an effective strategy to enhance the desalination performance of the membrane. A series of molecular dynamics simulations manifest that an additional lateral electric field significantly promotes ion rejection in carbon nanotubes (CNTs) under the drive of longitudinal pressure. Specifically, with the increase in the electric field, the ion flux shows a deep linear decay, while the water flux decreases only slightly, resulting in a linear increase in ion rejection. The energy barriers of ions around the CNT inlet are obtained by calculating the potentials of mean force to explain enhanced ion rejection. The lateral electric field uniformly raises the energy barriers of ions by pushing them away from the CNT inlet, corresponding to the enhanced ion velocity in the field direction. Furthermore, with the increase in CNT diameter, there is a significant increase in the flux of both ions and water; however, the lateral electric field can also obviously enhance the ion rejection in wider CNTs. Consequently, the enhancement of ion rejection by lateral electric fields should be universal for different CNT diameters, which opens a new avenue for selective permeation and may have broad implications for desalination devices with large pore sizes.
Collapse
|
6
|
Zhang G, Lin L, Shen W, Wang X, Wang Y, Cao L, Liu F. A New Strategy for Highly Efficient Separation between Monovalent Cations by Applying Opposite-Oriented Pressure and Electric Fields. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203396. [PMID: 35906891 DOI: 10.1002/smll.202203396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Biological ion channels exhibit excellent ion selectivity, but it has been challenging to design their artificial counterparts, especially for highly efficient separation of similar ions. Here, a new strategy to achieve high selectivity between alkali metal ions with artificial nanostructures is reported. Molecular dynamics (MD) simulations and experiments are combined to study the transportation of monovalent cations through graphene oxide (GO) nanoslits by applying pressure or/and electric fields. It is found that the ionic transport selectivity under the pressure driving reverses compared with that under the electric field driving. Moreover, MD simulations show that different monovalent cations can be separated with unprecedentedly high selectivity by applying opposite-oriented pressure and electric fields. This highly efficient separation originates from two distinctive ionic transporting modes, that is, hydration shells drive ions under pressure, but drag ions under the electric field. Hence, ions with different hydration strengths can be efficiently separated by tuning the net mobility induced by the two types of driving forces when the selected ions are kept moving while the other ones are immobilized. And nanoconfinement is confirmed to enhance the separation efficacy. This discovery paves a new avenue for separating similar ions without elaborately designing biomimetic nanostructures.
Collapse
Affiliation(s)
- Gehui Zhang
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
| | - Lingxin Lin
- College of Energy, Xiamen University, Xiamen, Fujian, 361005, China
| | - Wenhao Shen
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
| | - Xue Wang
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
| | - Yugang Wang
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
| | - Liuxuan Cao
- College of Energy, Xiamen University, Xiamen, Fujian, 361005, China
| | - Feng Liu
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
7
|
Ma X, Zhu X, Huang C, Fan J. Revealing the effects of terminal groups of MXene on the water desalination performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Gao H, Xu Q, Wang J, Ning C, Liu Y, Xie Y, Lu R. Beyond the Pore Size Limitation of a Nanoporous Graphene Monolayer Membrane for Water Desalination Assisted by an External Electric Field. J Phys Chem Lett 2022; 13:258-266. [PMID: 34968068 DOI: 10.1021/acs.jpclett.1c03834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One efficient strategy for addressing the global water shortage is advanced membrane separation, which depends on the precise pore size being close to the hydrated ion size and other surface properties like charge and polarity. However, it is very difficult to fabricate uniform pores with diameters of <1 nm on monolayer membranes. By applying an electric field (bias voltage) perpendicular to the direction of the pressure difference, herein we demonstrate for the first time that a monolayer nanoporous graphene membrane with pores much larger than hydrated ions exhibits high salt rejection and allows a high rate of water transport. This theoretical proposal goes beyond the pore size limitation and shows promise for the design of high-performance reverse osmosis membranes.
Collapse
Affiliation(s)
- Haiqi Gao
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Qinghao Xu
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Jing Wang
- Institute of Ultrafast Optical Physics, MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Cai Ning
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Yuzhen Liu
- Institute of Ultrafast Optical Physics, MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Ruifeng Lu
- Institute of Ultrafast Optical Physics, MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
9
|
Abstract
It has recently been suggested that a breakdown of electroneutrality occurs in highly confined nanopores that are encompassed by a dielectric material. This work elucidates the conditions for this breakdown. We show that the breakdown within the pore results from the response of the electric field within the dielectric. Namely, we show that this response is highly sensitive to the boundary condition at the dielectric edge. The standard Neumann boundary condition of no-flux predicts that the breakdown does not occur. However, a Dirichlet boundary condition for a zero-potential predicts a breakdown. Within this latter scenario, the breakdown exhibits a dependence on the thickness of the dielectric material. Specifically, infinite thickness dielectrics do not exhibit a breakdown, while dielectrics of finite thickness do exhibit a breakdown. Numerical simulations confirm theoretical predictions. The breakdown outcomes are discussed with regard to single pore systems and multiple pore systems.
Collapse
Affiliation(s)
- Yoav Green
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|