1
|
Mochizuki K, Adachi Y, Koga K. Close-Packed Ices in Nanopores. ACS NANO 2024; 18:347-354. [PMID: 38109520 PMCID: PMC10786155 DOI: 10.1021/acsnano.3c07084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Water molecules in any of the ice polymorphs organize themselves into a perfect four-coordinated hydrogen-bond network at the expense of dense packing. Even at high pressures, there seems to be no way to reconcile the ice rules with the close packing. Here, we report several close-packed ice phases in carbon nanotubes obtained from molecular dynamics simulations of two different water models. Typically they are in plastic states at high temperatures and are transformed into the hydrogen-ordered ice, keeping their close-packed structures at lower temperatures. The close-packed structures of water molecules in carbon nanotubes are identified with those of spheres in a cylinder. We present design principles of hydrogen-ordered, close-packed structures of ice in nanotubes, which suggest many possible dense ice forms with or without nonzero polarization. In fact, some of the simulated ices are found to exhibit ferroelectric ordering upon cooling.
Collapse
Affiliation(s)
- Kenji Mochizuki
- Department
of Chemistry, Zhejiang University, Hangzhou 310028, People’s Republic of China
| | - Yuji Adachi
- Graduate
School of Natural Sciences, Okayama University, Okayama 700-8530, Japan
- MEC
Company Ltd., Hyogo 660-0822, Japan
| | - Kenichiro Koga
- Department
of Chemistry, Okayama University, Okayama 700-8530, Japan
- Research Institute
for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
2
|
Sharma A, Kumar V, Chakraborty S. Micro-Solvation of Propofol in Propylene Glycol-Water Binary Mixtures: Molecular Dynamics Simulation Studies. J Phys Chem B 2023; 127:11011-11022. [PMID: 37972382 DOI: 10.1021/acs.jpcb.3c04932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The water microstructure around propofol plays a crucial role in controlling their solubility in the binary mixture. The unusual nature of such a water microstructure can influence both translational and reorientational dynamics, as well as the water hydrogen bond network near propofol. We have carried out all-atom molecular dynamics simulations of five different compositions of the propylene glycol (PG)/water binary mixture containing propofol (PFL) molecules to investigate the differential behavior of water microsolvation shells around propofol, which is likely to control the propofol solubility. It is evident from the simulation snapshots for various compositions that the PG at high molecular ratio favors the water cluster and extended chainlike network that percolates within the PG matrix, where the propofol is in the dispersed state. We estimated that the radial distribution function indicates higher ordered water microstructure around propofol for high PG content, as compared to the lower PG content in the PG/water mixture. So, the hydrophilic PG regulates the stability of the water micronetwork around propofol and its solubility in the binary mixture. We observed that the translational and rotational mobility of water belonging to the propofol microsolvation shell is hindered for high PG content and relaxed toward the low PG molecular ratio in the PG/water mixture. It has been noticed that the structural relaxation of the hydrogen bond formed between the propofol and the water molecules present in the propofol microsolvation shell for all five compositions is found to be slower for high PG content and becomes faster on the way to low PG content in the mixture. Simultaneously, we calculated the intermittent residence time correlation function of the water molecules belonging to the microsolvation shell around the propofol for five different compositions and found a faster short time decay followed up with long time components. Again, the origin of such long time decay is primarily from the structural relaxation of the microsolvation shell around the propofol, where the high PG content shows the slower structural relaxation that turns faster as the PG content approaches to the other end of the compositions. So, our studies showed that the slower structural relaxation of the microsolvation shell around propofol for a high PG molecular ratio in the PG/water mixture correlate well with the extensive ordering of the water microstructure and restricted water mobility and facilitates the dissolution process of propofol in the binary mixture.
Collapse
Affiliation(s)
- Anupama Sharma
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| | - Vishal Kumar
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| | - Sudip Chakraborty
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
3
|
Martelli F. Electrolyte Permeability in Plastic Ice VII. J Phys Chem B 2023. [PMID: 37471515 DOI: 10.1021/acs.jpcb.3c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Deep brines in water-rich planets form when electrolytes diffuse from the rocky interior through layers of thick dense ice such as ice VII and the hypothesized plastic ice VII. We perform classical molecular dynamics simulations of Li+, Na+, and K+ alkali ions and F- and Cl- halide ions in plastic ice VII at conditions similar to water-rich super-Earths, icy moons, and ocean worlds. We find that plastic ice VII is permeable to electrolytes on geological timescales. Diffusion occurs via jumps between adjacent voids in the bcc crystal structure and is governed by molecular rotations. An exception to this mechanism is Na+ which, at variance with other ions, can substitute water molecules on lattice positions. The bulk modulus of pristine plastic ice VII is dependent on the pace of molecular rotations: when the rotations are slow, the bulk modulus is 1 order of magnitude lower compared to the bulk modulus at conditions of fast rotations, hence providing direct evidence of the role of molecular rotations in determining elastic properties. Electrolytes affect the bulk modulus only at high-concentration conditions and slow molecular rotations. Our results show that plastic ice VII may facilitate the development of brines in water-rich planets and ocean worlds, with a clear significance for their potential to support exobiology and for the chemical evolution of their aqueous reservoirs.
Collapse
Affiliation(s)
- Fausto Martelli
- IBM Research Europe, Hartree Centre, WA4 4AD Daresbury, U.K
- Department of Chemical Engineering, The University of Manchester, Oxford Road M13 9PL Manchester, U.K
| |
Collapse
|
4
|
Zimoń MJ, Martelli F. Molecular rotations trigger a glass-to-plastic fcc heterogeneous crystallization in high-pressure water. J Chem Phys 2023; 158:114501. [PMID: 36948797 DOI: 10.1063/5.0138368] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
We report a molecular dynamics study of the heterogeneous crystallization of high-pressure glassy water using (plastic) ice VII as a substrate. We focus on the thermodynamic conditions P ∈ [6-8] GPa and T ∈ [100-500] K, at which (plastic) ice VII and glassy water are supposed to coexist in several (exo)planets and icy moons. We find that (plastic) ice VII undergoes a martensitic phase transition to a (plastic) fcc crystal. Depending on the molecular rotational lifetime τ, we identify three rotational regimes: for τ > 20 ps, crystallization does not occur; for τ ∼ 15 ps, we observe a very sluggish crystallization and the formation of a considerable amount of icosahedral environments trapped in a highly defective crystal or in the residual glassy matrix; and for τ < 10 ps, crystallization takes place smoothly, resulting in an almost defect-free plastic fcc solid. The presence of icosahedral environments at intermediate τ is of particular interest as it shows that such a geometry, otherwise ephemeral at lower pressures, is, indeed, present in water. We justify the presence of icosahedral structures based on geometrical arguments. Our results represent the first study of heterogeneous crystallization occurring at thermodynamic conditions of relevance for planetary science and unveil the role of molecular rotations in achieving it. Our findings (i) show that the stability of plastic ice VII, widely reported in the literature, should be reconsidered in favor of plastic fcc, (ii) provide a rationale for the role of molecular rotations in achieving heterogeneous crystallization, and (iii) represent the first evidence of long-living icosahedral structures in water. Therefore, our work pushes forward our understanding of the properties of water.
Collapse
Affiliation(s)
| | - Fausto Martelli
- IBM Research Europe, Hartree Centre, Daresbury WA4 4AD, United Kingdom
| |
Collapse
|
5
|
Henao A, Angulo-García D, Cuello GJ, Negrier P, Pardo LC. Investigating disordered phases of C2Cl6 using an information theory approach. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Toffano A, Russo J, Rescigno M, Ranieri U, Bove LE, Martelli F. Temperature- and pressure-dependence of the hydrogen bond network in plastic ice VII. J Chem Phys 2022; 157:094502. [DOI: 10.1063/5.0111189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We model, via classical molecular dynamics simulations, the plastic phase of ice VII across a wide range of the phase diagram of interest for planetary investigations. Although structural and dynamical properties of plastic ice VII are mostly independent on the thermodynamic conditions, the hydrogen bond network (HBN) acquires a diverse spectrum of topologies distinctly different from that of liquid water and of ice VII simulated at the same pressure. We observe that the HBN topology of plastic ice carries some degree of similarity with the crystal phase, stronger at thermodynamic conditions proximal to ice VII, and gradually lessening upon approaching the liquid state. Our results enrich our understanding of the properties of water at high pressure and high temperature, and may help in rationalizing the geology of
Collapse
Affiliation(s)
| | | | - Maria Rescigno
- Physics, Università degli Studi di Roma La Sapienza, Italy
| | | | | | | |
Collapse
|
7
|
Prasad D, Mitra N. High-temperature and high-pressure plastic phase of ice at the boundary of liquid water and ice VII. Proc Math Phys Eng Sci 2022. [DOI: 10.1098/rspa.2021.0958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Simultaneous high-temperature and high-pressure studies reveal phase transformation of bulk liquid water to an ice-VII-like structure having an eight coordination. It was demonstrated through this numerical study that the observed high-temperature and high-pressure phase of water obtained upon shock compression and equilibration has high rotational diffusion and thereby the hydrogen dynamics of these crystal structures are significantly complex compared with ice VII. The current work provides new characterization methods for the numerically observed plastic crystal phase of ice at the boundary of the liquid water and ice VII phases in which the molecules have a defined lattice position but rotate freely. It is anticipated that the present work will provide important data and guide new theoretical and experimental investigations in the search for plastic crystal phases of water. The power spectra plots of bulk liquid water subjected to different temperature and pressure conditions have also been presented in this numerical study, demonstrating significant differences between these high-temperature and high-pressure shock-equilibrated phases and those of pure ice VII at 10 GPa and liquid water at ambient temperature and pressure, as well as at elevated pressures and temperatures.
Collapse
Affiliation(s)
- Dipak Prasad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Nilanjan Mitra
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore 21218, MD, USA
| |
Collapse
|
8
|
Skarmoutsos I, Henao A, Guardia E, Samios J. On the Different Faces of the Supercritical Phase of Water at a Near-Critical Temperature: Pressure-Induced Structural Transitions Ranging from a Gaslike Fluid to a Plastic Crystal Polymorph. J Phys Chem B 2021; 125:10260-10272. [PMID: 34491748 DOI: 10.1021/acs.jpcb.1c05053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study reports a systematic analysis of a wide variety of structural, thermodynamic, and dynamic properties of supercritical water along the near-critical isotherm of T = 1.03Tc and up to extreme pressures, using molecular dynamics and Monte Carlo simulations. The methodology employed provides solid evidence about the existence of a structural transition from a liquidlike fluid to a compressed, tightly packed liquid, in the density and pressure region around 3.4ρc and 1.17 GPa, introducing an alternative approach to locate the crossing of the Frenkel line. Around 8.5 GPa another transition to a face-centered-cubic plastic crystal polymorph with density 5.178ρc is also observed, further confirmed by Gibbs free energy calculations using the two-phase thermodynamic model. The isobaric heat capacity maximum, closely related to the crossing of the Widom line, has also been observed around 0.8ρc, where the local density augmentation is also maximized. Another structural transition has been observed at 0.2ρc, related to the transformation of the fluid to a dilute gas at lower densities. These findings indicate that a near-critical isotherm can be divided into different domains where supercritical water exhibits distinct behavior, ranging from a gaslike one to a plastic crystal one.
Collapse
Affiliation(s)
- Ioannis Skarmoutsos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vas. Constantinou 48, GR-116 35, Athens, Greece
| | - Andrés Henao
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Department of Chemistry, University of Paderborn, Warburger Strasse 100, D-33098 Paderborn, Germany
| | - Elvira Guardia
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord-Edifici B4-B5, Jordi Girona 1-3, Barcelona E-08034, Spain
| | - Jannis Samios
- Department of Chemistry, Laboratory of Physical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis GR-157 71, Athens, Greece
| |
Collapse
|