1
|
Thomsen B, Nagai Y, Kobayashi K, Hamada I, Shiga M. Self-learning path integral hybrid Monte Carlo with mixed ab initio and machine learning potentials for modeling nuclear quantum effects in water. J Chem Phys 2024; 161:204109. [PMID: 39601285 DOI: 10.1063/5.0230464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The introduction of machine learned potentials (MLPs) has greatly expanded the space available for studying Nuclear Quantum Effects computationally with ab initio path integral (PI) accuracy, with the MLPs' promise of an accuracy comparable to that of ab initio at a fraction of the cost. One of the challenges in development of MLPs is the need for a large and diverse training set calculated by ab initio methods. This dataset should ideally cover the entire phase space, while not searching this space using ab initio methods, as this would be counterproductive and generally intractable with respect to computational time. In this paper, we present the self-learning PI hybrid Monte Carlo Method using a mixed ab initio and ML potential (SL-PIHMC-MIX), where the mixed potential allows for the study of larger systems and the extension of the original SL-HMC method [Nagai et al., Phys. Rev. B 102, 041124 (2020)] to PI methods and larger systems. While the MLPs generated by this method can be directly applied to run long-time ML-PIMD simulations, we demonstrate that using PIHMC-MIX with the trained MLPs allows for an exact reproduction of the structure obtained from ab initio PIMD. Specifically, we find that the PIHMC-MIX simulations require only 5000 evaluations of the 32-bead structure, compared to the 100 000 evaluations needed for the ab initio PIMD result.
Collapse
Affiliation(s)
- Bo Thomsen
- CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Yuki Nagai
- Information Technology Center, The University of Tokyo, 6-2-3 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Keita Kobayashi
- CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Ikutaro Hamada
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Motoyuki Shiga
- CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan
| |
Collapse
|
2
|
Butin O, Pereyaslavets L, Kamath G, Illarionov A, Sakipov S, Kurnikov IV, Voronina E, Ivahnenko I, Leontyev I, Nawrocki G, Darkhovskiy M, Olevanov M, Cherniavskyi YK, Lock C, Greenslade S, Kornberg RD, Levitt M, Fain B. The Determination of Free Energy of Hydration of Water Ions from First Principles. J Chem Theory Comput 2024; 20:5215-5224. [PMID: 38842599 DOI: 10.1021/acs.jctc.3c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
We model the autoionization of water by determining the free energy of hydration of the major intermediate species of water ions. We represent the smallest ions─the hydroxide ion OH-, the hydronium ion H3O+, and the Zundel ion H5O2+─by bonded models and the more extended ionic structures by strong nonbonded interactions (e.g., the Eigen H9O4+ = H3O+ + 3(H2O) and the Stoyanov H13O6+ = H5O2+ + 4(H2O)). Our models are faithful to the precise QM energies and their components to within 1% or less. Using the calculated free energies and atomization energies, we compute the pKa of pure water from first principles as a consistency check and arrive at a value within 1.3 log units of the experimental one. From these calculations, we conclude that the hydronium ion, and its hydrated state, the Eigen cation, are the dominant species in the water autoionization process.
Collapse
Affiliation(s)
- Oleg Butin
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Leonid Pereyaslavets
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Ganesh Kamath
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Alexey Illarionov
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Serzhan Sakipov
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Igor V Kurnikov
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Ekaterina Voronina
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ilya Ivahnenko
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Igor Leontyev
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Grzegorz Nawrocki
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Mikhail Darkhovskiy
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Michael Olevanov
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
- Department of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yevhen K Cherniavskyi
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Christopher Lock
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Sean Greenslade
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Michael Levitt
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Boris Fain
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| |
Collapse
|
3
|
Folkestad SD, Paul AC, Paul Née Matveeva R, Coriani S, Odelius M, Iannuzzi M, Koch H. Understanding X-ray absorption in liquid water using triple excitations in multilevel coupled cluster theory. Nat Commun 2024; 15:3551. [PMID: 38670938 PMCID: PMC11053016 DOI: 10.1038/s41467-024-47690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
X-ray absorption (XA) spectroscopy is an essential experimental tool to investigate the local structure of liquid water. Interpretation of the experiment poses a significant challenge and requires a quantitative theoretical description. High-quality theoretical XA spectra require reliable molecular dynamics simulations and accurate electronic structure calculations. Here, we present the first successful application of coupled cluster theory to model the XA spectrum of liquid water. We overcome the computational limitations on system size by employing a multilevel coupled cluster framework for large molecular systems. Excellent agreement with the experimental spectrum is achieved by including triple excitations in the wave function and using molecular structures from state-of-the-art path-integral molecular dynamics. We demonstrate that an accurate description of the electronic structure within the first solvation shell is sufficient to successfully model the XA spectrum of liquid water within the multilevel framework. Furthermore, we present a rigorous charge transfer analysis of the XA spectrum, which is reliable due to the accuracy and robustness of the electronic structure methodology. This analysis aligns with previous studies regarding the character of the prominent features of the XA spectrum of liquid water.
Collapse
Affiliation(s)
- Sarai Dery Folkestad
- Department of Chemistry, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Alexander C Paul
- Department of Chemistry, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Regina Paul Née Matveeva
- Department of Chemistry, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, DTU, 2800, Kongens Lyngby, Denmark
| | - Michael Odelius
- Department of Physics, Stockholm University, 10691, Stockholm, Sweden
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, 8057, Zürich, Switzerland
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.
| |
Collapse
|
4
|
Pereira RW, Ramabhadran RO. Accurate Computation of Aqueous p Kas of Biologically Relevant Organic Acids: Overcoming the Challenges Posed by Multiple Conformers, Tautomeric Equilibria, and Disparate Functional Groups with the Fully Black-Box p K-Yay Method. J Phys Chem A 2023; 127:9121-9138. [PMID: 37862610 DOI: 10.1021/acs.jpca.3c02977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The use of static electronic structure calculations to compute solution-phase pKas offers a great advantage in that a macroscopic bulk property could be computed via microscopic computations involving very few molecules. There are various sources of errors in the quantum chemical calculations though. Overcoming these errors to accurately compute pKas of a plethora of acids is an active area of research in physical chemistry pursued by both computational as well as experimental chemists. We recently developed the pK-Yay method in our attempt to accurately compute aqueous pKas of strong and weak acids. The method is fully black-box, computationally inexpensive, and is very easy for even a nonexpert to use. However, the method was thus far tested on very few molecules (only 16 in all). Herein, in order to assess the future applicability of pK-Yay, we study the effect of multiple conformers, the presence of tautomers under equilibrium, and the impact of a wide variety of functional groups (derivatives of acetic acid with substituents at various positions, dicarboxylic acids, aromatic carboxylic acids, amines and amides, phenols and thiols, and fluorine bearing organic acids). Starting with more than 1000 conformers and tautomers, this study establishes that overall errors of ∼ 1.0 pKa units are routinely obtained for a majority of the molecules. Larger errors are noted in cases where multiple charges, intramolecular hydrogen bonding, and several ionizable functional groups are simultaneously present. An important conclusion to emerge from this work is that, the computed pKas are insensitive (difference <0.5) to whether we consider multiple conformers/tautomers or only choose the most stable conformer/tautomer. Further, pK-Yay captures the stereoelectronic effects arising due to differing axial vs equatorial pattern, and is useful to predict the dominant acid-base equilibrium in a system featuring several equilibria. Overall, pK-Yay may be employed in several chemical applications featuring organic molecules and biomonomers.
Collapse
Affiliation(s)
- Roshni W Pereira
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh 517507, India
- Centre for Atomic Molecular Optical Sciences and Technology (CAMOST), Tirupati, Andhra Pradesh 517507, India
| | - Raghunath O Ramabhadran
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh 517507, India
- Centre for Atomic Molecular Optical Sciences and Technology (CAMOST), Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
5
|
Ogata S, Uranagase M. Protonation of Strained Epoxy Resin under Wet Conditions via First-Principles Calculations Using the H +-Shift Method. J Phys Chem B 2023; 127:2629-2638. [PMID: 36917503 DOI: 10.1021/acs.jpcb.3c00401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A significant challenge in adhesive bonding is the accelerated breaking of stretched adhesives under wet conditions, which is known as cohesive failure. One group of commonly used adhesives consists of the amine-cured epoxy resins. Based on deprotonation free-energy calculations of the unstrained resin in water, it has recently been proposed that these adhesives can undergo failure through breakage originating at the protonated amine group under neutral or acidic conditions [J. Phys. Chem. B 2021, 125, 8989-8996]. In this study, we comprehensively investigated the degree of protonation of the amine group under both stretched and compressed conditions by devising a robust first-principles protonation calculation method applicable to strained materials. It was found that the amine group was partially protonated in neutral water at 298 K and that the amine group was protonated when the epoxy resin was stretched to a greater extent in water, and vice versa. These findings support the physicochemical cause of cohesive failure due to protonation of the amine group in the stretched amine-cured epoxy resins.
Collapse
Affiliation(s)
- Shuji Ogata
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Masayuki Uranagase
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
6
|
Joutsuka T. Molecular Mechanism of Autodissociation in Liquid Water: Ab Initio Molecular Dynamics Simulations. J Phys Chem B 2022; 126:4565-4571. [PMID: 35694850 DOI: 10.1021/acs.jpcb.2c01971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Autodissociation in liquid water is one of the most important processes in various topics of physical chemistry, such as acid-base chemistry. Molecular simulations have elucidated most of the molecular mechanisms at the atomic level, yet quantitative analysis to compare with experiments using the potential of mean force (PMF) remains a hurdle, including the definition of reaction coordinates and the accuracy of liquid structures by ab initio molecular dynamics (AIMD) simulations with density functional theory (DFT) methods. Here, we perform AIMD simulations with the revPBE-D3 exchange-correlation functional to compute the PMF profiles of autoionization, or proton transfer (PT), in liquid water. For the quantitative analysis with physically meaningful reaction coordinates, we employ a PT coordinate, donor-acceptor (OH--H3O+) distance, and hydrogen (H)-bond number. The one-dimensional (1D) PMF profile along the PT coordinate shows no local minimum in the product state of PT (OH- and H3O+), which is necessary to accurately compute the acid dissociation constant (or pKa). On the other hand, the 2D PMF profiles along the PT coordinate and donor-acceptor distance show local minima in the product state and reaction barriers, and the computed pKw is comparable to the experiment. In addition, the 2D PMF profiles along the PT coordinate and the H-bond number reveal the molecular mechanism of the H-bond rearrangement concomitant with PT, in which the H-bond breaking before PT is slightly preferable. These findings indicate that an accurate evaluation of pKa by MD simulations requires the donor-acceptor distance in addition to the conventional PT coordinate.
Collapse
Affiliation(s)
- Tatsuya Joutsuka
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, Hitachi 316-8511 Ibaraki, Japan.,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, 319-1106 Ibaraki, Japan
| |
Collapse
|
7
|
Thomsen B, Shiga M. Structures of liquid and aqueous water isotopologues at ambient temperature from ab initio path integral simulations. Phys Chem Chem Phys 2022; 24:10851-10859. [PMID: 35504275 DOI: 10.1039/d2cp00499b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heavy hydrogen isotopes D and T are found in trace amounts in water, and when their concentration increases they can play an intricate role in modulating the physical properties of the liquid. We present an analysis of the microscopic structures of ambient light water (H2O(l)), heavy water (D2O(l)), T2O(l), HDO(aq) and HTO(aq) studied by ab initio path integral molecular dynamics (PIMD). Unlike previous ab initio PIMD investigations of H2O(l) and D2O(l) [Chen et al., Phys. Rev. Lett., 2003, 91, 215503] [Machida et al., J. Chem. Phys., 2017, 148, 102324] we find that D2O(l) is more structured than H2O(l), as is predicted by the experiment. The agreement between the experiment and our simulation for H2O(l) and D2O(l) allows us to accurately predict the intra- and intermolecular structures of T2O(l) HDO(aq) and HTO(aq). T2O(l) is found to have a similar intermolecular structure to that of D2O(l), while the intramolecular structure is more compact, giving rise to a smaller dipole moment than those of H2O(l) and D2O(l). For the mixed isotope species, HDO(aq) and HTO(aq), we find smaller dipole moments and fewer hydrogen bonds when compared with the pure species H2O and D2O. We can attribute this effect to the relative compactness of the mixed isotope species, which results in a lower dipole moment than that of the pure species.
Collapse
Affiliation(s)
- Bo Thomsen
- CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba, 277-0871, Japan.
| | - Motoyuki Shiga
- CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba, 277-0871, Japan.
| |
Collapse
|
8
|
Deuterium Isotope Effects on Acid-Base Equilibrium of Organic Compounds. Molecules 2021; 26:molecules26247687. [PMID: 34946769 PMCID: PMC8705040 DOI: 10.3390/molecules26247687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Deuterium isotope effects on acid-base equilibrium have been investigated using a combined path integral and free-energy perturbation simulation method. To understand the origin of the linear free-energy relationship of ΔpKa=pKaD2O-pKaH2O versus pKaH2O, we examined two theoretical models for computing the deuterium isotope effects. In Model 1, only the intrinsic isotope exchange effect of the acid itself in water was included by replacing the titratable protons with deuterons. Here, the dominant contribution is due to the difference in zero-point energy between the two isotopologues. In Model 2, the medium isotope effects are considered, in which the free energy change as a result of replacing H2O by D2O in solute-solvent hydrogen-bonding complexes is determined. Although the average ΔpKa change from Model 1 was found to be in reasonable agreement with the experimental average result, the pKaH2O dependence of the solvent isotope effects is absent. A linear free-energy relationship is obtained by including the medium effect in Model 2, and the main factor is due to solvent isotope effects in the anion-water complexes. The present study highlights the significant roles of both the intrinsic isotope exchange effect and the medium solvent isotope effect.
Collapse
|
9
|
Thomsen B, Shiga M. Ab initio study of nuclear quantum effects on sub- and supercritical water. J Chem Phys 2021; 155:194107. [PMID: 34800944 DOI: 10.1063/5.0071857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The structures of water in the ambient, subcritical, and supercritical conditions at various densities were studied systematically by ab initio path integral molecular dynamics simulations. It was found that the nuclear quantum effects (NQEs) have a significant impact on the structure of hydrogen bonds in close contact, not only in the ambient condition but also in the sub- and supercritical conditions. The NQEs on the structure beyond the hydrogen bond contact are important in ambient water, but not much for water in the sub- and supercritical conditions. The NQEs are furthermore important for determining the number of hydrogen bonds in the ambient conditions, and this role is, however, diminished in the sub- and supercritical conditions. The NQEs do, nevertheless, show their importance in determining the intramolecular structure of water and the close contact structures of the hydrogen bonds, even at sub- and supercritical conditions. Using the RPBE-D3 functional, the computed radial distribution functions for ambient water are in excellent agreement with experimental data, upgrading our previous results using the BLYP-D2 functional [Machida et al., J. Chem. Phys. 148, 102324 (2018)]. The computed radial distribution functions for water in the sub- and supercritical conditions were carefully compared with experiment. In particular, we found that the first peak in hydrogen pair distribution functions matches only when the NQEs are taken into account.
Collapse
Affiliation(s)
- Bo Thomsen
- CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Motoyuki Shiga
- CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan
| |
Collapse
|