1
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
2
|
Sivasakthi P, Samanta PK. Unveiling the photophysical and excited state properties of multi-resonant OLED emitters using combined DFT and CCSD method. Phys Chem Chem Phys 2024. [PMID: 39041111 DOI: 10.1039/d4cp00637b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Multi-resonance thermally-activated delayed fluorescence (MR-TADF) is predominantly observed in organoboron heteroatom-embedded molecules, featuring enhanced performance in organic light-emitting diodes (OLEDs) with high color purity, chemical stability, and excellent photoluminescence quantum yields. However, predicting the impact of any chemical change remains a challenge. Computational methods including density functional theory (DFT) still require accurate descriptions of photophysical properties of MR-TADF emitters. To circumvent this drawback, we explored recent investigations on the CzBX (Cz = carbazole, X = O, S, or Se) molecule as a central building block. We constructed a series of MR-TADF molecules by controlling chalcogen atom embedding, employing a combined approach of DFT and coupled-cluster (CCSD) methods. Our predicted results for MR-TADF emitter molecules align with the reported experimental data in the literature. The variation in the positions of chalcogen atoms embedded within the CzBX2X framework imparts unique photophysical properties.
Collapse
Affiliation(s)
- Pandiyan Sivasakthi
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad-500078, India.
- Department of Chemistry, School of Science, GITAM University, Hyderabad-502329, India
| | - Pralok K Samanta
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad-500078, India.
- Department of Chemistry, School of Science, GITAM University, Hyderabad-502329, India
| |
Collapse
|
3
|
Di Maiolo F, Phan Huu DKA, Giavazzi D, Landi A, Racchi O, Painelli A. Shedding light on thermally-activated delayed fluorescence. Chem Sci 2024; 15:5434-5450. [PMID: 38638233 PMCID: PMC11023041 DOI: 10.1039/d4sc00033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/17/2024] [Indexed: 04/20/2024] Open
Abstract
Thermally activated delayed fluorescence (TADF) is a hot research topic in view of its impressive applications in a wide variety of fields from organic LEDs to photodynamic therapy and metal-free photocatalysis. TADF is a rare and fragile phenomenon that requires a delicate equilibrium between tiny singlet-triplet gaps, sizable spin-orbit couplings, conformational flexibility and a balanced contribution of charge transfer and local excited states. To make the picture more complex, this precarious equilibrium is non-trivially affected by the interaction of the TADF dye with its local environment. The concurrent optimization of the dye and of the embedding medium is therefore of paramount importance to boost practical applications of TADF. Towards this aim, refined theoretical and computational approaches must be cleverly exploited, paying attention to the reliability of adopted approximations. In this perspective, we will address some of the most important issues in the field. Specifically, we will critically review theoretical and computational approaches to TADF rates, highlighting the limits of widespread approaches. Environmental effects on the TADF photophysics are discussed in detail, focusing on the major role played by dielectric and conformational disorder in liquid solutions and amorphous matrices.
Collapse
Affiliation(s)
- Francesco Di Maiolo
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - D K Andrea Phan Huu
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Davide Giavazzi
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Andrea Landi
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Ottavia Racchi
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Anna Painelli
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
4
|
Herbert JM. Visualizing and characterizing excited states from time-dependent density functional theory. Phys Chem Chem Phys 2024; 26:3755-3794. [PMID: 38226636 DOI: 10.1039/d3cp04226j] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Time-dependent density functional theory (TD-DFT) is the most widely-used electronic structure method for excited states, due to a favorable combination of low cost and semi-quantitative accuracy in many contexts, even if there are well recognized limitations. This Perspective describes various ways in which excited states from TD-DFT calculations can be visualized and analyzed, both qualitatively and quantitatively. This includes not just orbitals and densities but also well-defined statistical measures of electron-hole separation and of Frenkel-type exciton delocalization. Emphasis is placed on mathematical connections between methods that have often been discussed separately. Particular attention is paid to charge-transfer diagnostics, which provide indicators of when TD-DFT may not be trustworthy due to its categorical failure to describe long-range electron transfer. Measures of exciton size and charge separation that are directly connected to the underlying transition density are recommended over more ad hoc metrics for quantifying charge-transfer character.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
5
|
Bardi B, Giavazzi D, Ferrari E, Iagatti A, Di Donato M, Phan Huu DKA, Di Maiolo F, Sissa C, Masino M, Lapini A, Painelli A. Solid state solvation: a fresh view. MATERIALS HORIZONS 2023; 10:4172-4182. [PMID: 37522331 DOI: 10.1039/d3mh00988b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The design of efficient organic electronic devices, including OLEDs, OPVs, luminescent solar concentrators, etc., relies on the optimization of relevant materials, often constituted by an active (functional) dye embedded in a matrix. Understanding solid state solvation (SSS), i.e. how the properties of the active dye are affected by the matrix, is therefore an issue of fundamental and technological relevance. Here an extensive experimental and theoretical investigation is presented shedding light on this, somewhat controversial, topic. The spectral properties of the dye at equilibrium, i.e. absorption and Raman spectra, are not affected by the matrix dynamics. Reliable estimates of the matrix polarity are then obtained from an analysis of the micro-Raman spectra of polar dyes. Specifically, to establish a reliable polarity scale, the spectra of DCM or NR dispersed in amorphous matrices are compared with the spectra of the same dyes in liquid solvents with known polarity. On the other hand, steady-state emission spectra obtained in solid matrices depend in a highly non-trivial way on the matrix polarity and its dynamics. An extensive experimental and theoretical analysis of the time-resolved emission spectra of NR in a very large time window (15 fs-15 ns) allows us to validate this dye as a good probe of the dielectric dynamics of the surrounding medium. We provide a first assessment of the relaxation dynamics of two matrices (mCBPCN and DPEPO) of interest for OLED application, unambiguously demonstrating that the matrix readjusts for at least 15 ns after the dye photoexcitation.
Collapse
Affiliation(s)
- Brunella Bardi
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Davide Giavazzi
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Elena Ferrari
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Alessandro Iagatti
- CNR-INO (Istituto Nazionaledi Ottica), Largo Fermi 6, 50125 Firenze, Italy
- LENS (European Laboratory for Non-Linear Spectroscopy), Via N. Carrara 1, 50019, Sesto Fiorentino, FI, Italy
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), Via N. Carrara 1, 50019, Sesto Fiorentino, FI, Italy
- ICCOM-CNR, via Madonna del Piano 10, I-50019 Sesto Fiorentino, FI, Italy
| | - D K Andrea Phan Huu
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Francesco Di Maiolo
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Cristina Sissa
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Matteo Masino
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Andrea Lapini
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
- LENS (European Laboratory for Non-Linear Spectroscopy), Via N. Carrara 1, 50019, Sesto Fiorentino, FI, Italy
| | - Anna Painelli
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
6
|
Bardi B, Vygranenko KV, Koszarna B, Vakuliuk O, Dobrzycki Ł, Gryko DT, Terenziani F, Painelli A. Novel Method for the Synthesis of Merocyanines: New Photophysical Possibilities for a Known Class of Fluorophores. Chemistry 2023; 29:e202300979. [PMID: 37203589 DOI: 10.1002/chem.202300979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/20/2023]
Abstract
A new, transformative method for the preparation of rhodols and other merocyanines from readily available tetrafluorohydroxybenzaldehyde and aminophenols has been developed. It is now possible to prepare merocyanines bearing three fluorine atoms and additional conjugated rings, and the whole one-pot process occurs under neutral, mild conditions. Three heretofore unknown merocyanine-based architectures were prepared using this strategy from aminonaphthols and 4-hydroxycoumarins. The ability to change the structure of original rhodol chromophore into π-expanded merocyanines translates to a comprehensive method for the modulation of photophysical properties, such as shifting the absorption and emission bands across almost the entire visible spectrum, reaching a huge Stokes shift i. e. 4800 cm-1 , brightness approximately 80.000 M-1 cm-1 , two-photon absorption cross-section above 150 GM and switching-on/off solvatofluorochromism. A detailed investigation allowed to rationalize the different spectroscopic behavior of rhodols and new merocyanines, addressing solvatochromism and two-photon absorption.
Collapse
Affiliation(s)
- Brunella Bardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124, Parma, Italy
| | | | - Beata Koszarna
- Institute of Organic Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - Olena Vakuliuk
- Institute of Organic Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Dobrzycki
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - Francesca Terenziani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124, Parma, Italy
| | - Anna Painelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124, Parma, Italy
| |
Collapse
|
7
|
Tang N, Zhou J, Wang L, Stolte M, Xie G, Wen X, Liu L, Würthner F, Gierschner J, Xie Z. Anomalous deep-red luminescence of perylene black analogues with strong π-π interactions. Nat Commun 2023; 14:1922. [PMID: 37024474 PMCID: PMC10079835 DOI: 10.1038/s41467-023-37171-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Perylene bisimide (PBI) dyes are known as red, maroon and black pigments, whose colors depend on the close π-π stacking arrangement. However, contrary to the luminescent monomers, deep-red and black PBI pigments are commonly non- or only weakly fluorescent due to (multiple) quenching pathways. Here, we introduce N-alkoxybenzyl substituted PBIs that contain close π stacking arrangement (exhibiting dπ-π ≈ 3.5 Å, and longitudinal and transversal displacements of 3.1 Å and 1.3 Å); however, they afford deep-red emitters with solid-state fluorescence quantum yields (ΦF) of up to 60%. Systematic photophysical and computational studies in solution and in the solid state reveal a sensitive interconversion of the PBI-centred locally excited state and a charge transfer state, which depends on the dihedral angle (θ) between the benzyl and alkoxy groups. This effectively controls the emission process, and enables high ΦF by circumventing the common quenching pathways commonly observed for perylene black analogues.
Collapse
Affiliation(s)
- Ningning Tang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China.
| | - Liangxuan Wang
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, 28049, Madrid, Spain
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Matthias Stolte
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Guojing Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Xinbo Wen
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Linlin Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, 28049, Madrid, Spain.
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China.
| |
Collapse
|
8
|
Swathi K, Sujith M, Divya PS, P MV, Delledonne A, Phan Huu DKA, Di Maiolo F, Terenziani F, Lapini A, Painelli A, Sissa C, Thomas KG. From symmetry breaking to symmetry swapping: is Kasha's rule violated in multibranched phenyleneethynylenes? Chem Sci 2023; 14:1986-1996. [PMID: 36845926 PMCID: PMC9945429 DOI: 10.1039/d2sc05206g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
The phenomenon of excited-state symmetry breaking is often observed in multipolar molecular systems, significantly affecting their photophysical and charge separation behavior. As a result of this phenomenon, the electronic excitation is partially localized in one of the molecular branches. However, the intrinsic structural and electronic factors that regulate excited-state symmetry breaking in multibranched systems have hardly been investigated. Herein, we explore these aspects by adopting a joint experimental and theoretical investigation for a class of phenyleneethynylenes, one of the most widely used molecular building blocks for optoelectronic applications. The large Stokes shifts observed for highly symmetric phenyleneethynylenes are explained by the presence of low-lying dark states, as also established by two-photon absorption measurements and TDDFT calculations. In spite of the presence of low-lying dark states, these systems show an intense fluorescence in striking contrast to Kasha's rule. This intriguing behavior is explained in terms of a novel phenomenon, dubbed "symmetry swapping" that describes the inversion of the energy order of excited states, i.e., the swapping of excited states occurring as a consequence of symmetry breaking. Thus, symmetry swapping explains quite naturally the observation of an intense fluorescence emission in molecular systems whose lowest vertical excited state is a dark state. In short, symmetry swapping is observed in highly symmetric molecules having multiple degenerate or quasi-degenerate excited states that are prone to symmetry breaking.
Collapse
Affiliation(s)
- K. Swathi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di ParmaParco Area delle Scienze 17A43124ParmaItaly,School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM)VithuraThiruvananthapuram695 551India
| | - Meleppatt Sujith
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura Thiruvananthapuram 695 551 India
| | - P. S. Divya
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM)VithuraThiruvananthapuram695 551India
| | - Merin Varghese P
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura Thiruvananthapuram 695 551 India
| | - Andrea Delledonne
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
| | - D. K. Andrea Phan Huu
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di ParmaParco Area delle Scienze 17A43124ParmaItaly
| | - Francesco Di Maiolo
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
| | - Francesca Terenziani
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
| | - Andrea Lapini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
| | - Anna Painelli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
| | - Cristina Sissa
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
| | - K. George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM)VithuraThiruvananthapuram695 551India
| |
Collapse
|
9
|
Sivasakthi P, Jacob JM, Ravva MK, Samanta PK. Theoretical Insights into the Optical and Excited State Properties of Donor-Phenyl Bridge-Acceptor Containing Through-Space Charge Transfer Molecules. J Phys Chem A 2023; 127:886-893. [PMID: 36653147 DOI: 10.1021/acs.jpca.2c07055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A comparative new strategy to enhance thermally activated delayed fluorescence (TADF) of through-space charge transfer (CT) molecules in organic light-emitting diodes (OLEDs) is investigated. Generally, TADF molecules adopt a twisted donor and acceptor structure to get a sufficiently small ΔEST and a higher value of the spin-orbit coupling matrix element (SOCME). However, molecules containing donor-phenyl bridge-acceptor (D-p-A) units and featuring π-stacked architectures have intramolecular CT contribution through space and exhibit high TADF efficiency. We have explored the insights into the TADF mechanism in D-p-A molecules using the density functional theory (DFT) and time-dependent DFT methods. The calculated optical absorption and ΔEST values are found to be in good agreement with available experimental data. Interestingly, we found the origin of the SOCME to be the twisted orientation of the donor and bridge moieties. Also, we predicted similar molecules with enhanced OLED efficiency with different substitutions.
Collapse
Affiliation(s)
- Pandiyan Sivasakthi
- Department of Chemistry, School of Science, GITAM University, Hyderabad502329, India
| | - Jesni M Jacob
- Department of Chemistry, SRM University-AP, Amaravati522240, Andhra Pradesh, India
| | - Mahesh Kumar Ravva
- Department of Chemistry, SRM University-AP, Amaravati522240, Andhra Pradesh, India
| | - Pralok K Samanta
- Department of Chemistry, School of Science, GITAM University, Hyderabad502329, India
| |
Collapse
|
10
|
Chaudhuri D, Patterson CH. TDDFT versus GW/BSE Methods for Prediction of Light Absorption and Emission in a TADF Emitter. J Phys Chem A 2022; 126:9627-9643. [PMID: 36515973 PMCID: PMC9806837 DOI: 10.1021/acs.jpca.2c06403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Design concepts for organic light emitting diode (OLED) emitters, which exhibit thermally activated delayed fluorescence (TADF) and thereby achieve quantum yields exceeding 25%, depend on singlet-triplet splitting energies of order kT to allow reverse intersystem crossing at ambient temperatures. Simulation methods for these systems must be able to treat relatively large organic molecules, as well as predict their excited state energies, transition energies, singlet-triplet splittings, and absorption and emission cross sections with reasonable accuracy, in order to prove useful in the design process. Here we compare predictions of TDDFT with M06-2X and ωB97X-D exchange-correlation functionals and a GoWo@HF/BSE method for these quantities in the well-studied DPTZ-DBTO2 TADF emitter molecule. Geometry optimization is performed for ground state (GS) and lowest donor-acceptor charge transfer (CT) state for each functional. Optical absorption and emission cross sections and energies are calculated at these geometries. Relaxation energies are on the order of 0.5 eV, and the importance of obtaining excited state equilibrium geometries in predicting delayed fluorescence is demonstrated. There are clear trends in predictions of GoWo@HF/BSE, and TDDFT/ωB97X-D and M06-2X methods in which the former method favors local exciton (LE) states while the latter favors DA CT states and ωB97X-D makes intermediate predictions. GoWo@HF/BSE suffers from triplet instability for LE states but not CT states relevant for TADF. Shifts in HOMO and LUMO levels on adding a conductor-like polarizable continuum model dielectric background are used to estimate changes in excitation energies on going from the gas phase to a solvated molecule.
Collapse
|
11
|
Gillett AJ, Pershin A, Pandya R, Feldmann S, Sneyd AJ, Alvertis AM, Evans EW, Thomas TH, Cui LS, Drummond BH, Scholes GD, Olivier Y, Rao A, Friend RH, Beljonne D. Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters. NATURE MATERIALS 2022; 21:1150-1157. [PMID: 35927434 PMCID: PMC7613666 DOI: 10.1038/s41563-022-01321-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/13/2022] [Indexed: 05/22/2023]
Abstract
Thermally activated delayed fluorescence enables organic semiconductors with charge transfer-type excitons to convert dark triplet states into bright singlets via reverse intersystem crossing. However, thus far, the contribution from the dielectric environment has received insufficient attention. Here we study the role of the dielectric environment in a range of thermally activated delayed fluorescence materials with varying changes in dipole moment upon optical excitation. In dipolar emitters, we observe how environmental reorganization after excitation triggers the full charge transfer exciton formation, minimizing the singlet-triplet energy gap, with the emergence of two (reactant-inactive) modes acting as a vibrational fingerprint of the charge transfer product. In contrast, the dielectric environment plays a smaller role in less dipolar materials. The analysis of energy-time trajectories and their free-energy functions reveals that the dielectric environment substantially reduces the activation energy for reverse intersystem crossing in dipolar thermally activated delayed fluorescence emitters, increasing the reverse intersystem crossing rate by three orders of magnitude versus the isolated molecule.
Collapse
Affiliation(s)
| | - Anton Pershin
- Laboratory for Chemistry of Novel Materials, Université de Mons, Mons, Belgium
- Wigner Research Centre for Physics, Budapest, Hungary
| | - Raj Pandya
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Sascha Feldmann
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | | | - Emrys W Evans
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemistry, Swansea University, Swansea, UK
| | - Tudor H Thomas
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Lin-Song Cui
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | | | | | - Yoann Olivier
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solide, Namur Institute of Structured Matter, Université de Namur, Namur, Belgium
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Université de Mons, Mons, Belgium.
| |
Collapse
|
12
|
Phan Huu DK, Saseendran S, Dhali R, Franca LG, Stavrou K, Monkman A, Painelli A. Thermally Activated Delayed Fluorescence: Polarity, Rigidity, and Disorder in Condensed Phases. J Am Chem Soc 2022; 144:15211-15222. [PMID: 35944182 PMCID: PMC9413221 DOI: 10.1021/jacs.2c05537] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/27/2022]
Abstract
We present a detailed and comprehensive picture of the photophysics of thermally activated delayed fluorescence (TADF). The approach relies on a few-state model, parametrized ab initio on a prototypical TADF dye, that explicitly accounts for the nonadiabatic coupling between electrons and vibrational and conformational motion, crucial to properly address (reverse) intersystem crossing rates. The Onsager model is exploited to account for the medium polarity and polarizability, with careful consideration of the different time scales of relevant degrees of freedom. TADF photophysics is then quantitatively addressed in a coherent and exhaustive approach that accurately reproduces the complex temporal evolution of emission spectra in liquid solvents as well as in solid organic matrices. The different rigidity of the two environments is responsible for the appearance in matrices of important inhomogeneous broadening phenomena that are ascribed to the intertwined contribution from (quasi)static conformational and dielectric disorder.
Collapse
Affiliation(s)
- D. K.
Andrea Phan Huu
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Sangeeth Saseendran
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Rama Dhali
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | | | - Kleitos Stavrou
- Department
of Physics, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Andrew Monkman
- Department
of Physics, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Anna Painelli
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
13
|
Francese T, Kundu A, Gygi F, Galli G. Quantum simulations of thermally activated delayed fluorescence in an all-organic emitter. Phys Chem Chem Phys 2022; 24:10101-10113. [PMID: 35416814 DOI: 10.1039/d2cp01147f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the prototypical NAI-DMAC thermally activated delayed fluorescence (TADF) emitter in the gas phase- and high-packing fraction limits at finite temperature, by combining first principles molecular dynamics with a quantum thermostat to account for nuclear quantum effects (NQE). We find a weak dependence of the singlet-triplet energy gap (ΔEST) on temperature in both the solid and the molecule, and a substantial effect of packing. While the ΔEST vanishes in the perfect crystal, it is of the order of ∼0.3 eV in the molecule, with fluctuations ranging from 0.1 to 0.4 eV at 300 K. The transition probability between the HOMOs and LUMOs has a stronger dependence on temperature than the singlet-triplet gap, with a desirable effect for thermally activated fluorescence; such temperature effect is weaker in the condensed phase than in the molecule. Our results on ΔEST and oscillator strengths, together with our estimates of direct and reverse intersystem crossing rates, show that optimization of packing and geometrical conformation is critical to increase the efficiency of TADF compounds. Our findings highlight the importance of considering thermal fluctuations and NQE to obtain robust predictions of the electronic properties of NAI-DMAC.
Collapse
Affiliation(s)
- Tommaso Francese
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| | - Arpan Kundu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| | - Francois Gygi
- Department of Computer Science, University of California, Davis, CA 95616, USA
| | - Giulia Galli
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. .,Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA.,Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Organic Emitters Showing Excited-States Energy Inversion: An Assessment of MC-PDFT and Correlation Energy Functionals Beyond TD-DFT. COMPUTATION 2022. [DOI: 10.3390/computation10020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The lowest-energy singlet (S1) and triplet (T1) excited states of organic conjugated chromophores are known to be accurately calculated by modern wavefunction and Time-Dependent Density Functional Theory (TD-DFT) methods, with the accuracy of the latter heavily relying on the exchange-correlation functional employed. However, there are challenging cases for which this cannot be the case, due to the fact that those excited states are not exclusively formed by single excitations and/or are affected by marked correlation effects, and thus TD-DFT might fall short. We will tackle here a set of molecules belonging to the azaphenalene family, for which research recently documented an inversion of the relative energy of S1 and T1 excited states giving rise to a negative energy difference (ΔEST) between them and, thereby, contrary to most of the systems thus far treated by TD-DFT. Since methods going beyond standard TD-DFT are not extensively applied to excited-state calculations and considering how challenging this case is for the molecules investigated, we will prospectively employ here a set of non-standard methods (Multi-Configurational Pair Density Functional Theory or MC-PDFT) and correlation functionals (i.e., Lie–Clementi and Colle–Salvetti) relying not only on the electronic density but also on some modifications considering the intricate electronic structure of these systems.
Collapse
|
15
|
Intersystem Crossing in Boron-Based Donor-Spiro-Acceptor Organic Chromophore: A Detailed Theoretical Study. J Phys Chem A 2021; 125:6674-6680. [PMID: 34343011 DOI: 10.1021/acs.jpca.1c03729] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intersystem crossing and reverse intersystem crossing (rISC) processes were investigated in a boron-based donor-spiro-acceptor organic chromophore which shows thermally activated delayed fluorescence. Due to the perpendicular arrangement between donor and acceptor moieties, the HOMO and the LUMO are spatially separated, and the compound shows charge transfer (CT) transitions. We found both S1 and T1 excited states are CT in nature (i.e., electron and hole wave functions are localized on acceptor and donor units, respectively) and T2, which is higher in energy than S1 and T1, is locally excited in nature (i.e., both electron and hole wave functions are localized on an acceptor unit). Because of the same nature of excitation (i.e., CT here), the spin-orbit coupling matrix element between S1 and T1 is very low and insignificant exciton conversion occurs from the T1 state to the S1 state (and vice versa). Our combined time-dependent density functional theory and quantum dynamics simulation shows that the rISC process from the T1 state to the S1 state can be enhanced by the presence of a nearby local excited triplet state (i.e., T2 state here). A smaller gap between the T1 and T2 states efficiently establishes the rISC route.
Collapse
|