Ghosh PK, Nayak S, Liu J, Li Y, Marchesoni F. Autonomous ratcheting by stochastic resetting.
J Chem Phys 2023;
159:031101. [PMID:
37466227 DOI:
10.1063/5.0159148]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
We propose a generalization of the stochastic resetting mechanism for a Brownian particle diffusing in a one-dimensional periodic potential: randomly in time, the particle gets reset at the bottom of the potential well it was in. Numerical simulations show that in mirror asymmetric potentials, stochastic resetting rectifies the particle's dynamics, with a maximum drift speed for an optimal average resetting time. Accordingly, an unbiased Brownian tracer diffusing on an asymmetric substrate can rectify its motion by adopting an adaptive stop-and-go strategy. Our proposed ratchet mechanism can model the directed autonomous motion of molecular motors and micro-organisms.
Collapse