1
|
Bolzonello L, Bruschi M, Fresch B, van Hulst NF. Nonlinear Optical Spectroscopy of Molecular Assemblies: What Is Gained and Lost in Action Detection? J Phys Chem Lett 2023; 14:11438-11446. [PMID: 38085697 PMCID: PMC10749474 DOI: 10.1021/acs.jpclett.3c02824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
This study elucidates the information content that is extracted from action-2D electronic spectroscopy (A-2DES) when the output intensity is not proportional to the number of excitations generated. Such a scenario can be realized in both fluorescence and photocurrent detection because of direct interaction like exciton-exciton annihilation or indirect effects in the signal generation or detection. By means of an intuitive probabilistic model supported by nonlinear response theory, the study concludes that in molecular assemblies the ground-state bleaching contribution can dominate the nonlinear signal and partially or completely hide the stimulated emission. In this case, the spectral effect resembles incoherent mixing, even in the absence of exciton-exciton annihilation, implying reduced information about the excited-state dynamics with an increasing number of chromophores. This finding has important implications for the selection of samples for A-2DES as well as for its interpretation.
Collapse
Affiliation(s)
- Luca Bolzonello
- ICFO - Institut
de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Matteo Bruschi
- Department
of Chemical Science, University of Padova, via Marzolo 1, Padova 35131, Italy
| | - Barbara Fresch
- Department
of Chemical Science, University of Padova, via Marzolo 1, Padova 35131, Italy
- Padua
Quantum Technologies Research Center, Università
degli Studi di Padova, Padova 35122, Italy
| | - Niek F. van Hulst
- ICFO - Institut
de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, Castelldefels, Barcelona 08860, Spain
- ICREA
- Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| |
Collapse
|
2
|
Ouyang Z, Gan Z, Yan L, You W, Moran AM. Measuring carrier diffusion in MAPbI3 solar cells with photocurrent-detected transient grating spectroscopy. J Chem Phys 2023; 159:094201. [PMID: 37668248 DOI: 10.1063/5.0159301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
Conventional time-of-flight methods can be used to determine carrier mobilities for photovoltaic cells in which the transit time between electrodes is greater than the RC time constant of the device. To measure carrier drift on sub-ns timescales, we have recently developed a two-pulse time-of-flight technique capable of detecting drift velocities with 100-ps time resolution in perovskite materials. In this method, the rates of carrier transit across the active layer of a device are determined by varying the delay time between laser pulses and measuring the magnitude of the recombination-induced nonlinearity in the photocurrent. Here, we present a related experimental approach in which diffractive optic-based transient grating spectroscopy is combined with our two-pulse time-of-flight technique to simultaneously probe drift and diffusion in orthogonal directions within the active layer of a photovoltaic cell. Carrier density gratings are generated using two time-coincident pulse-pairs with passively stabilized phases. Relaxation of the grating amplitude associated with the first pulse-pair is detected by varying the delay and phase of the density grating corresponding to the second pulse-pair. The ability of the technique to reveal carrier diffusion is demonstrated with model calculations and experiments conducted using MAPbI3 photovoltaic cells.
Collapse
Affiliation(s)
- Zhenyu Ouyang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zijian Gan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Liang Yan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
3
|
Bruschi M, Bolzonello L, Gallina F, Fresch B. Unifying Nonlinear Response and Incoherent Mixing in Action-2D Electronic Spectroscopy. J Phys Chem Lett 2023; 14:6872-6879. [PMID: 37490770 PMCID: PMC10405272 DOI: 10.1021/acs.jpclett.3c01670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
Action-detection has expanded the scope and applicability of 2D electronic spectroscopy, while posing new challenges for the unambiguous interpretation of spectral features. In this context, identifying the origin of cross-peaks at early waiting times is not trivial, and incoherent mixing is often invoked as an unwanted contribution masking the nonlinear signal. In this work, we elaborate on the relation between the nonlinear response and the incoherent mixing contribution by analyzing the action signal in terms of one- and two-particle observables. Considering a weakly interacting molecular dimer, we show how cross-peaks at early waiting times, reflecting exciton-exciton annihilation dynamics, can be equivalently interpreted as arising from incoherent mixing. This equivalence, on the one hand, highlights the information content of spectral features related to incoherent mixing and, on the other hand, provides an efficient numerical scheme to simulate the action response of weakly interacting systems.
Collapse
Affiliation(s)
- Matteo Bruschi
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, via Marzolo 1, Padua 35131, Italy
| | - Luca Bolzonello
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona
Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Federico Gallina
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, via Marzolo 1, Padua 35131, Italy
| | - Barbara Fresch
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, via Marzolo 1, Padua 35131, Italy
- Padua
Quantum Technologies Research Center, Università
degli Studi di Padova, Padua 35131, Italy
| |
Collapse
|
4
|
Ouyang Z, Yan L, You W, Moran AM. Probing drift velocity dispersion in MAPbI 3 photovoltaic cells with nonlinear photocurrent spectroscopy. J Chem Phys 2022; 157:174202. [DOI: 10.1063/5.0116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conventional time-of-flight (TOF) measurements yield charge carrier mobilities in photovoltaic cells with time resolution limited by the RC time constant of the device, which is on the order of 0.1–1 µs for the systems targeted in the present work. We have recently developed an alternate TOF method, termed nonlinear photocurrent spectroscopy (NLPC), in which carrier drift velocities are determined with picosecond time resolution by applying a pair of laser pulses to a device with an experimentally controlled delay time. In this technique, carriers photoexcited by the first laser pulse are “probed” by way of recombination processes involving carriers associated with the second laser pulse. Here, we report NLPC measurements conducted with a simplified experimental apparatus in which synchronized 40 ps diode lasers enable delay times up to 100 µs at 5 kHz repetition rates. Carrier mobilities of ∼0.025 cm2/V/s are determined for MAPbI3 photovoltaic cells with active layer thicknesses of 240 and 460 nm using this instrument. Our experiments and model calculations suggest that the nonlinear response of the photocurrent weakens as the carrier densities photoexcited by the first laser pulse trap and broaden while traversing the active layer of a device. Based on this aspect of the signal generation mechanism, experiments conducted with co-propagating and counter-propagating laser beam geometries are leveraged to determine a 60 nm length scale of drift velocity dispersion in MAPbI3 films. Contributions from localized states induced by thermal fluctuations are consistent with drift velocity dispersion on this length scale.
Collapse
Affiliation(s)
- Zhenyu Ouyang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Liang Yan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
5
|
Ouyang Z, Zhou N, McNamee M, Yan L, Williams OF, Gan Z, Gao R, You W, Moran AM. Origin of Layered Perovskite Device Efficiencies Revealed by Multidimensional Time-of-Flight Spectroscopy. J Chem Phys 2021; 156:084202. [DOI: 10.1063/5.0072976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhenyu Ouyang
- University of North Carolina at Chapel Hill, United States of America
| | - Ninghao Zhou
- Chemistry, University of North Carolina at Chapel Hill, United States of America
| | - Meredith McNamee
- University of North Carolina at Chapel Hill, The University of North Carolina at Chapel Hill, United States of America
| | - Liang Yan
- Chemistry, University of North Carolina at Chapel Hill, United States of America
| | | | - Zijian Gan
- University of Science and Technology of China School of Chemistry and Materials Science, China
| | - Ran Gao
- Chemistry, University of North Carolina at Chapel Hill Department of Chemistry, United States of America
| | - Wei You
- University of North Carolina, Chapel Hill, United States of America
| | - Andrew M Moran
- Chemistry, The University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|