1
|
Shokri S, Ebrahimi N, Sadeghi R. Combined experimental and computational investigation of tetrabutylammonium bromide-carboxylic acid-based deep eutectic solvents. J Mol Graph Model 2024; 131:108805. [PMID: 38838616 DOI: 10.1016/j.jmgm.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Aiming at shedding light on the molecular interactions in deep eutectic solvents (DESs), the DESs based on tetrabutylammonium bromide (TBAB) as hydrogen bond acceptor (HBA) and carboxylic acids (CAs) (formic acid (FA), oxalic acid (OA), and malonic acid (MA)) as hydrogen bond donor (HBD) were investigated by both experimental and theoretical techniques. The thermal behaviors of the prepared DESs were investigated by differential scanning calorimetry (DSC) method. In order to study the hydrogen bond formation between the DESs constituents, the FT-IR analysis was carried out. The large positive deviations of the iso solvent activity lines of ternary HBA + HBD + 2-propanol mixtures determined by the isopiestic technique from the semi-ideal behavior indicate that CAs interact strongly with TBAB and therefore they can form DESs. Molecular dynamics (MD) simulations were performed to present an atomic-scale image of the components and describe the microstructure of DESs. From the MD simulations, the radial distribution functions (RDFs), coordination numbers (CNs), combined distribution functions (CDFs), and spatial distribution functions (SDFs) were calculated to investigate the interaction between the components and three-dimensional visualization of the DESs. The obtained results confirmed the importance of hydrogen bonds in the formation of TBAB/CAs DESs.
Collapse
Affiliation(s)
- Sahar Shokri
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Nosaibah Ebrahimi
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Rahmat Sadeghi
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| |
Collapse
|
2
|
Cichowska-Kopczyńska I, Nowosielski B, Warmińska D. Deep Eutectic Solvents: Properties and Applications in CO 2 Separation. Molecules 2023; 28:5293. [PMID: 37513167 PMCID: PMC10384334 DOI: 10.3390/molecules28145293] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Nowadays, many researchers are focused on finding a solution to the problem of global warming. Carbon dioxide is considered to be responsible for the "greenhouse" effect. The largest global emission of industrial CO2 comes from fossil fuel combustion, which makes power plants the perfect point source targets for immediate CO2 emission reductions. A state-of-the-art method for capturing carbon dioxide is chemical absorption using an aqueous solution of alkanolamines, most frequently a 30% wt. solution of monoethanolamine (MEA). Unfortunately, the usage of alkanolamines has a number of drawbacks, such as the corrosive nature of the reaction environment, the loss of the solvent due to its volatility, and a high energy demand at the regeneration step. These problems have driven the search for alternatives to that method, and deep eutectic solvents (DESs) might be a very good substitute. Many types of DESs have thus far been investigated for efficient CO2 capture, and various hydrogen bond donors and acceptors have been used. Deep eutectic solvents that are capable of absorbing carbon dioxide physically and chemically have been reported. Strategies for further CO2 absorption improvement, such as the addition of water, other co-solvents, or metal salts, have been proposed. Within this review, the physical properties of DESs are presented, and their effects on CO2 absorption capacity are discussed in conjunction with the types of HBAs and HBDs and their molar ratios. The practical issues of using DESs for CO2 separation are also described.
Collapse
Affiliation(s)
- Iwona Cichowska-Kopczyńska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Bartosz Nowosielski
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Dorota Warmińska
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|
3
|
Rodríguez-Llorente D, Martín-Gutiérrez D, Suárez-Rodríguez P, Navarro P, Álvarez-Torrellas S, García J, Larriba M. Sustainable recovery of phenolic antioxidants from real olive vegetation water with natural hydrophobic eutectic solvents and terpenoids. ENVIRONMENTAL RESEARCH 2023; 220:115207. [PMID: 36603659 DOI: 10.1016/j.envres.2022.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/25/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Olive oil production leads to the generation of olive mill wastewater (OMWW). Due to the presence of phenolic compounds, they are difficult to process, but they represent a source of high-added value chemicals since they have antioxidant and therapeutic properties. This work has studied the extraction of phenolic compounds from a type of OMWW, olive vegetation water, which presents these compounds in a more diluted dosage than in other studied to date, to revalue this waste stream. A real olive vegetation water from a Spanish olive oil producer was used, and liquid-liquid extraction was applied. Terpenoids and terpene-based hydrophobic eutectic solvents were systematically used to extract phenolic compounds following the concentrations of tyrosol, catechol, caffeic acid, and total phenolic content. By molecular simulation with the COSMO-RS method, 4 terpenoids, and 2 eutectic solvents were selected and compared with 2 conventional solvents. The Solvent/Feed ratio in the extraction of phenolic compounds was studied, showing that the solvents with the highest extraction results were geraniol, eucalyptol, and eutectic solvent menthol + camphor, which outperformed conventional solvents methyl isobutyl ketone and diisopropyl ether. Menthol + camphor gave total phenol extraction yields of 88.73% at a Solvent/Feed ratio in volume of 0.50, surpassing all solvents tested. A solvent reuse and regeneration process was applied by back-extraction of the 4 solvents: FTIR results showed the stability of the solvents while maintaining yields in the solvent reuse process. The phenolic compounds could be concentrated in the alkaline phase to factors up to 49.3 to the initial concentration in olive vegetation water. The alkaline phases were neutralized to obtain a precipitate with a caffeic acid content of up to 26 % wt%, and a tyrosol-rich supernatant with a concentration of up to 6.54 g/L. This work proposes a process using natural solvents to extract phenolic compounds from olive vegetation water.
Collapse
Affiliation(s)
- Diego Rodríguez-Llorente
- Catalysis and Separation Processes Research Group (CyPS), Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense S/n, 28040, Madrid, Spain
| | - Diego Martín-Gutiérrez
- Catalysis and Separation Processes Research Group (CyPS), Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense S/n, 28040, Madrid, Spain
| | - Pablo Suárez-Rodríguez
- Catalysis and Separation Processes Research Group (CyPS), Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense S/n, 28040, Madrid, Spain
| | - Pablo Navarro
- Department of Chemical Engineering, Autonomous University of Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Silvia Álvarez-Torrellas
- Catalysis and Separation Processes Research Group (CyPS), Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense S/n, 28040, Madrid, Spain
| | - Juan García
- Catalysis and Separation Processes Research Group (CyPS), Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense S/n, 28040, Madrid, Spain
| | - Marcos Larriba
- Catalysis and Separation Processes Research Group (CyPS), Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense S/n, 28040, Madrid, Spain.
| |
Collapse
|
4
|
Mjalli FS, Shakourian-Fard M, Kamath G, Murshid G, Naser J, Al Ma'awali S. Experimental and theoretical study of the physicochemical properties of the novel imidazole-based eutectic solvent. J Mol Graph Model 2023; 118:108319. [PMID: 36137434 DOI: 10.1016/j.jmgm.2022.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/02/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Novel solvents and their applications are experiencing an increasing interest by the scientific community. Imidazole has been utilized as a major component in many successful ionic liquids. However, very limited studies were reported for using it as a hydrogen bond acceptor in the synthesis of eutectic solvents. In this work, a novel eutectic solvent composed of Imidazole and Monoethanolamine (MEA) is synthesized at different molar ratios. The basic physicochemical properties such as melting point, density, viscosity, and refractive index were measured at different temperatures and modeled as a function of molar composition and temperature. FTIR and 1H NMR analyses were conducted and, the nature and strength of the molecular interaction between the two solvent molecules were investigated by conducting combined molecular dynamics (MD) simulations and density functional theory (DFT) calculations. The study revealed the electrostatic H-bonding nature of interaction with strength related to their bond distances. The binding energy between the two DES ingredients is proportional to the amount of MEA in the DES due to increasing the H-bonding interactions between Imidazole and MEA molecules. These findings suggest that DES might be used in a variety of chemical and industrial applications.
Collapse
Affiliation(s)
- Farouq S Mjalli
- Department of Petroleum & Chemical Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Mehdi Shakourian-Fard
- Department of Chemical Engineering, Birjand University of Technology, Birjand, P.O. Box 97175/569, Iran
| | - Ganesh Kamath
- Dalzierfiver LLC, 3500 Carlfied St, EL Sobrante, CA, 94803, USA
| | - Ghulam Murshid
- Department of Petroleum & Chemical Engineering, Sultan Qaboos University, Muscat, Oman
| | - Jamil Naser
- Department of Petroleum & Chemical Engineering, Sultan Qaboos University, Muscat, Oman
| | - Suhaib Al Ma'awali
- Department of Petroleum & Chemical Engineering, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
5
|
Rozas S, Atilhan M, Aparicio S. Bulk liquid phase and interfacial behavior of cineole – Based deep eutectic solvents with regard to carbon dioxide. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Tolmachev D, Lukasheva N, Ramazanov R, Nazarychev V, Borzdun N, Volgin I, Andreeva M, Glova A, Melnikova S, Dobrovskiy A, Silber SA, Larin S, de Souza RM, Ribeiro MCC, Lyulin S, Karttunen M. Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. Int J Mol Sci 2022; 23:645. [PMID: 35054840 PMCID: PMC8775846 DOI: 10.3390/ijms23020645] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Deep eutectic solvents (DESs) are one of the most rapidly evolving types of solvents, appearing in a broad range of applications, such as nanotechnology, electrochemistry, biomass transformation, pharmaceuticals, membrane technology, biocomposite development, modern 3D-printing, and many others. The range of their applicability continues to expand, which demands the development of new DESs with improved properties. To do so requires an understanding of the fundamental relationship between the structure and properties of DESs. Computer simulation and machine learning techniques provide a fruitful approach as they can predict and reveal physical mechanisms and readily be linked to experiments. This review is devoted to the computational research of DESs and describes technical features of DES simulations and the corresponding perspectives on various DES applications. The aim is to demonstrate the current frontiers of computational research of DESs and discuss future perspectives.
Collapse
Affiliation(s)
- Dmitry Tolmachev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Lukasheva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Ruslan Ramazanov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Victor Nazarychev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Borzdun
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Igor Volgin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Maria Andreeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Artyom Glova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Sofia Melnikova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Alexey Dobrovskiy
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Steven A. Silber
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Sergey Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Rafael Maglia de Souza
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Mauro Carlos Costa Ribeiro
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Sergey Lyulin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
7
|
Rozas S, Alomari N, Aparicio S, Atilhan M. Nanoscopic study on carvone-terpene based natural deep eutectic solvents. J Chem Phys 2021; 155:224702. [PMID: 34911325 DOI: 10.1063/5.0074823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Terpene-based natural deep eutectic solvents (NADES) formed by using carvone as the hydrogen bond acceptor and a series of organic acids including tartaric, succinic, malic, and lactic acids as hydrogen bond donors are studied using a combination of molecular simulation methods. Density functional theory was used to study small molecular clusters and the topological characterization of the intermolecular forces using the atoms-in-a-molecule approach. Close-range interactions between the optimized carvone bases eutectic solvents between carbon dioxide have been studied for potential utilization of these solvents for gas capture purposes. Furthermore, COSMO-RS calculations have been carried out for the carbon dioxide solubilization performance of NADES compounds and to obtain s-profiles to infer the polarity and H-bond forming ability of the studied solvents. On the other hand, molecular dynamics simulations were carried out to analyze the bulk liquid properties and their relationship with relevant macroscopic properties (e.g., density or thermal expansion). Last but not least, relevant toxicity properties of the studied systems were predicted and reported in this work. The reported results provide the characterization of environmentally friendly NADES and show the suitability of carvone for advanced applications as carbon dioxide solubilizers.
Collapse
Affiliation(s)
- Sara Rozas
- Department of Chemistry, University of Burgos, 09001 Burgos, Spain
| | - Noor Alomari
- Department of Chemical and Paper Engineering, Western Michigan University, Kalamazoo, Michigan 49008-5462, USA
| | | | - Mert Atilhan
- Department of Chemical and Paper Engineering, Western Michigan University, Kalamazoo, Michigan 49008-5462, USA
| |
Collapse
|
8
|
Abbott AP, Edler KJ, Page AJ. Deep eutectic solvents-The vital link between ionic liquids and ionic solutions. J Chem Phys 2021; 155:150401. [PMID: 34686062 DOI: 10.1063/5.0072268] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
When selecting a solvent for a given solute, the strongly held idiom "like dissolves like", meaning that polar solvents are used for polar solutes, is often used. This idea has resulted from the concept that most molecular solvents are homogeneous. In a deep eutectic solvent (DES), however, both components can be ionic or non-ionic, polar or non-polar. By tuning the components, DESs can solubilize a wide variety of solutes, often mixing hydrophobic and hydrophilic components, and the mixture can be designed to control phase behavior. The liquids often contain significant short-length order, and preferential solvation of one component often occurs. The addition of small polar molecules such as water or alcohols results in non-homogeneous liquids, which have significantly decreased viscosity and increased ionic conductivity. Accordingly, the areas covered in this special issue focus on structure and dynamics, solvation, the mobility of charged species, and the ability to obtain controllable phase behavior by adding polar diluents or using hydrophobic DESs.
Collapse
Affiliation(s)
- Andrew P Abbott
- School of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Karen J Edler
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Alister J Page
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia
| |
Collapse
|