1
|
Coronas LE, Franzese G. Phase behavior of metastable water from large-scale simulations of a quantitatively accurate model near ambient conditions: The liquid-liquid critical point. J Chem Phys 2024; 161:164502. [PMID: 39435842 DOI: 10.1063/5.0219313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/30/2024] [Indexed: 10/23/2024] Open
Abstract
The molecular mechanisms of water's unique anomalies are still debated upon. Experimental challenges have led to simulations suggesting a liquid-liquid (LL) phase transition, culminating in the supercooled region's LL critical point (LLCP). Computational expense, small system sizes, and the reliability of water models often limit these simulations. We adopt the CVF model, which is reliable, transferable, scalable, and efficient across a wide range of temperatures and pressures around ambient conditions. By leveraging the timescale separation between fast hydrogen bonds and slow molecular coordinates, the model allows a thorough exploration of the metastable phase diagram of liquid water. Using advanced numerical techniques to bypass dynamical slowing down, we perform finite-size scaling on larger systems than those used in previous analyses. Our study extrapolates thermodynamic behavior in the infinite-system limit, demonstrating the existence of the LLCP in the 3D Ising universality class in the low-temperature, low-pressure side of the line of temperatures of maximum density, specifically at TC = 186 ± 4 K and PC = 174 ± 14 MPa, at the end of a liquid-liquid phase separation stretching up to ∼200 MPa. These predictions align with recent experimental data and sophisticated models, highlighting that hydrogen bond cooperativity governs the LLCP and the origin of water anomalies. We also observe substantial cooperative fluctuations in the hydrogen bond network at scales larger than 10 nm, even at temperatures relevant to biopreservation. These findings have significant implications for nanotechnology and biophysics, providing new insights into water's behavior under varied conditions.
Collapse
Affiliation(s)
- Luis Enrique Coronas
- 1 Secció de Física Estadística i Interdisciplinària, Departament de Física de la Matèria Condensada, Facutat de Física, University of Barcelona, Martí i Franquès 1, Barcelona 08028, Spain and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| | - Giancarlo Franzese
- 1 Secció de Física Estadística i Interdisciplinària, Departament de Física de la Matèria Condensada, Facutat de Física, University of Barcelona, Martí i Franquès 1, Barcelona 08028, Spain and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| |
Collapse
|
2
|
Neophytou A, Starr FW, Chakrabarti D, Sciortino F. Hierarchy of topological transitions in a network liquid. Proc Natl Acad Sci U S A 2024; 121:e2406890121. [PMID: 39207731 PMCID: PMC11388341 DOI: 10.1073/pnas.2406890121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/30/2024] [Indexed: 09/04/2024] Open
Abstract
The representation of complex systems as networks has become a critical tool across many fields of science. In the context of physical networks, such as biological neural networks, vascular networks, or network liquids where the nodes and edges occupy volume in three-dimensional space, the question of how they become densely packed is of special importance. Here, we investigate a model network liquid, which is known to densify via two successive liquid-liquid phase transitions (LLPTs). We elucidate the importance of rings-cyclic paths formed by bonded particles in the networks-and their spatial disposition in understanding the structural changes that underpin the increase in density across the LLPTs. Our analyses demonstrate that the densification of these networks is primarily driven by the formation of linked rings, and the LLPTs correspond to a hierarchy of topological transitions where rings form the fundamental building blocks. We envisage entanglement to emerge as a general mechanism for densification, with wide implications for the embedding of physical networks, especially in confined spaces.
Collapse
Affiliation(s)
- Andreas Neophytou
- Dipartimento di Fisica, Sapienza Universitá di Roma, Roma 00185, Italy
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Francis W Starr
- Department of Physics, Wesleyan University, Middletown, CT 06459
| | - Dwaipayan Chakrabarti
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | | |
Collapse
|
3
|
Weldon R, Wang F. Water Potential from Adaptive Force Matching for Ice and Liquid with Revised Dispersion Predicts Supercooled Liquid Anomalies in Good Agreement with Two Independent Experimental Fits. J Phys Chem B 2024; 128:3398-3407. [PMID: 38536126 PMCID: PMC11017247 DOI: 10.1021/acs.jpcb.3c06495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
A revised version of the Water potential from Adaptive force matching for Ice and Liquid (WAIL) was developed by using the previous data set for fitting the WAIL model but with a dispersion term calculated using symmetry adapted perturbation theory (SAPT). The model has no adjustable parameters and relies solely on fitting first-principles information. The new model, named revised WAIL (rWAIL), shows improved predictions of most properties of water when compared to the previously published WAIL model. The rWAIL model also compares favorably to other first-principles-derived water models, such as MB-Pol, at only a fraction of the computational cost. The rWAIL model is used to study the properties of supercooled water. The model shows evidence of a liquid-liquid phase transition (LLPT) in the supercooled regimes with the liquid-liquid critical point (LLCP) at 203 K and 90 MPa. This estimate is in good agreement with a recent polynomial fit to the experimental density of water. Also, the fit to the surface tension of supercooled water based on the rWAIL model shows excellent agreement with the corresponding fit to the experimental data. Consistent with previously published molecular dynamics and experimental data, the surface tension of water exhibits exponential growth in the supercooled regime, which is likely a result of the emergence of a low-density liquid form of water. The simulation thus unites two separate experimental fits with one first-principles-based model, lending strong evidence of an LLPT in real water.
Collapse
Affiliation(s)
- Raymond Weldon
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Feng Wang
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
4
|
Sciortino F, Gartner TE, Debenedetti PG. Free-energy landscape and spinodals for the liquid-liquid transition of the TIP4P/2005 and TIP4P/Ice models of water. J Chem Phys 2024; 160:104501. [PMID: 38456528 DOI: 10.1063/5.0196964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
Continued increases in computational power now make it possible to evaluate the free-energy landscape associated with the first-order liquid-liquid transition in realistic models of water for which an accurate estimate of the liquid-liquid critical point exists, and to explore its change with pressure near the coexistence line. We report the results of 50 μs-long NPT umbrella sampling simulations for two realistic models for water, TIP4P/2005 and TIP4P/ice, 3-9 K below their critical temperatures. The free energy profile at different pressures clearly shows the presence of two well-defined free energy basins and makes it possible to identify the liquid-liquid spinodal points, the limits of stability that define the (temperature dependent) pressure range within which two distinct free energy basins exist. The results show that for temperatures less than 10 K below the critical temperature, metastable states are possible across a very limited pressure interval, information that is relevant to the interpretation of experiments probing the metastable phase behavior of deeply supercooled water in the so-called no-man's land.
Collapse
Affiliation(s)
- Francesco Sciortino
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Thomas E Gartner
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
5
|
Foffi R, Sciortino F. Identification of local structures in water from supercooled to ambient conditions. J Chem Phys 2024; 160:094504. [PMID: 38436442 DOI: 10.1063/5.0188764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Studies of water thermodynamics have long been tied to the identification of two distinct families of local structures, whose competition could explain the origin of the many thermodynamic anomalies and the hypothesized liquid-liquid critical point in water. Despite the many successes and insights gained, the structural indicators proposed throughout the years were not able to unequivocally identify these two families over a wide range of conditions. We show that a recently introduced indicator, Ψ, which exploits information on the hydrogen bond network connectivity, can reliably identify these two distinct local environments over a wide range of thermodynamic conditions (188-300 K and 0-13 kbar) and that close to the liquid-liquid critical point, the spatial correlations of density fluctuations are identical to those of the Ψ indicator. Our results strongly support the idea that water thermodynamic properties arise from the competition between two distinct and identifiable local environments.
Collapse
Affiliation(s)
- Riccardo Foffi
- Department of Civil, Environmental and Geomatic Engineering, Institute for Environmental Engineering, ETH Zürich, Laura-Hezner-Weg 7, 8093 Zürich, Switzerland
| | - Francesco Sciortino
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
6
|
Guidarelli Mattioli F, Sciortino F, Russo J. A neural network potential with self-trained atomic fingerprints: A test with the mW water potential. J Chem Phys 2023; 158:104501. [PMID: 36922151 DOI: 10.1063/5.0139245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
We present a neural network (NN) potential based on a new set of atomic fingerprints built upon two- and three-body contributions that probe distances and local orientational order, respectively. Compared with the existing NN potentials, the atomic fingerprints depend on a small set of tunable parameters that are trained together with the NN weights. In addition to simplifying the selection of the atomic fingerprints, this strategy can also considerably increase the overall accuracy of the network representation. To tackle the simultaneous training of the atomic fingerprint parameters and NN weights, we adopt an annealing protocol that progressively cycles the learning rate, significantly improving the accuracy of the NN potential. We test the performance of the network potential against the mW model of water, which is a classical three-body potential that well captures the anomalies of the liquid phase. Trained on just three state points, the NN potential is able to reproduce the mW model in a very wide range of densities and temperatures, from negative pressures to several GPa, capturing the transition from an open random tetrahedral network to a dense interpenetrated network. The NN potential also reproduces very well properties for which it was not explicitly trained, such as dynamical properties and the structure of the stable crystalline phases of mW.
Collapse
Affiliation(s)
| | | | - John Russo
- Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy
| |
Collapse
|
7
|
Foffi R, Sciortino F. Correlated Fluctuations of Structural Indicators Close to the Liquid-Liquid Transition in Supercooled Water. J Phys Chem B 2022; 127:378-386. [PMID: 36538764 PMCID: PMC9841516 DOI: 10.1021/acs.jpcb.2c07169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multiple numerical studies have unambiguously shown the existence of a liquid-liquid critical point in supercooled states for different numerical models of water, and various structural indicators have been put forward to describe the transformation associated with this phase transition. Here we analyze numerical simulations of near-critical supercooled water to compare the behavior of several of such indicators with critical density fluctuations. We show that close to the critical point most indicators are strongly correlated to density, and some of them even display identical distributions of fluctuations. These indicators probe the exact same free energy landscape, therefore providing a thermodynamic description of critical supercooled water which is identical to that provided by the density order parameter. This implies that close to the critical point, there is a tight coupling between many, only apparently distinct, structural degrees of freedom.
Collapse
Affiliation(s)
- Riccardo Foffi
- Institute
for Environmental Engineering, Department of Civil, Environmental
and Geomatic Engineering, ETH Zürich, 8093Zürich, Switzerland
| | - Francesco Sciortino
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro
5, I-00185Rome, Italy,E-mail:
| |
Collapse
|
8
|
Mondal A, Ramesh G, Singh RS. Manifestations of the structural origin of supercooled water’s anomalies in the heterogeneous relaxation on the potential energy landscape. J Chem Phys 2022; 157:184503. [DOI: 10.1063/5.0124041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Liquid water is well-known for its intriguing thermodynamic anomalies in the supercooled state. The phenomenological two-state models—based on the assumption of the existence of two types of competing local states (or, structures) in liquid water—have been extremely successful in describing water’s thermodynamic anomalies. However, the precise structural features of these competing local states in liquid water still remain elusive. Here, we have employed a predefined structural order parameter-free approach to unambiguously identify two types of competing local states—entropically and energetically favored—with significantly different structural and energetic features in the TIP4P/2005 liquid water. This identification is based on the heterogeneous structural relaxation of the system in the potential energy landscape (PEL) during the steepest-descent energy minimization. This heterogeneous relaxation is characterized using order parameters inspired by the spin-glass transition in frustrated magnetic systems. We have further established a direct relationship between the population fluctuation of the two states and the anomalous behavior of the heat capacity in supercooled water. The composition-dependent spatial distribution of the entropically favored local states shows an interesting crossover from a spanning network-like single cluster to the spatially delocalized clusters in the close vicinity of the Widom line. Additionally, this study establishes a direct relationship between the topographic features of the PEL and the water’s thermodynamic anomalies in the supercooled state and provides alternate markers (in addition to the locus of maxima of thermodynamic response functions) for the Widom line in the phase plane.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Gadha Ramesh
- Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Rakesh S. Singh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
9
|
Toffano A, Russo J, Rescigno M, Ranieri U, Bove LE, Martelli F. Temperature- and pressure-dependence of the hydrogen bond network in plastic ice VII. J Chem Phys 2022; 157:094502. [DOI: 10.1063/5.0111189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We model, via classical molecular dynamics simulations, the plastic phase of ice VII across a wide range of the phase diagram of interest for planetary investigations. Although structural and dynamical properties of plastic ice VII are mostly independent on the thermodynamic conditions, the hydrogen bond network (HBN) acquires a diverse spectrum of topologies distinctly different from that of liquid water and of ice VII simulated at the same pressure. We observe that the HBN topology of plastic ice carries some degree of similarity with the crystal phase, stronger at thermodynamic conditions proximal to ice VII, and gradually lessening upon approaching the liquid state. Our results enrich our understanding of the properties of water at high pressure and high temperature, and may help in rationalizing the geology of
Collapse
Affiliation(s)
| | | | - Maria Rescigno
- Physics, Università degli Studi di Roma La Sapienza, Italy
| | | | | | | |
Collapse
|
10
|
Martelli F. Steady-like topology of the dynamical hydrogen bond network in supercooled water. PNAS NEXUS 2022; 1:pgac090. [PMID: 36741425 PMCID: PMC9896910 DOI: 10.1093/pnasnexus/pgac090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023]
Abstract
We investigate the link between topology of the hydrogen bond network (HBN) and large-scale density fluctuations in water from ambient conditions to the glassy state. We observe a transition from a temperature-dependent topology at high temperatures, to a steady-like topology below the Widom temperature TW ∼ 220 K signaling the fragile-to-strong crossover and the maximum in structural fluctuations. As a consequence of the steady topology, the network suppresses large-scale density fluctuations much more efficiently than at higher temperatures. Below TW , the contribution of coordination defects of the kind A 2 D 1 (two acceptors and one donor) to the kinetics of the HBN becomes progressively more pronounced, suggesting that A 2 D 1 configurations may represent the main source of dynamical heterogeneities. Below the vitrification temperature, the freezing of rotational and translational degrees of freedom allow for an enhanced suppression of large-scale density fluctuations and the sample reaches the edges of nearly hyperuniformity. The formed network still hosts coordination defects, hence implying that nearly hyperuniformity goes beyond the classical continuous random network paradigm of tetrahedral networks and can emerge in scenarios much more complex than previously assumed. Our results unveil a hitherto undisclosed link between network topology and properties of water essential for better understanding water's rich and complex nature. Beyond implications for water, our findings pave the way to a better understanding of the physics of supercooled liquids and disordered hyperuniform networks at large.
Collapse
|
11
|
Weis J, Sciortino F, Panagiotopoulos AZ, Debenedetti PG. Liquid-Liquid Criticality in the WAIL Water Model. J Chem Phys 2022; 157:024502. [DOI: 10.1063/5.0099520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The hypothesis that the anomalous behavior of liquid water is related to the existence of a second critical point in deeply supercooled states has long been the subject of intense debate. Recent, sophisticated experiments designed to observe the transformation between the two subcritical liquids on nano- and microsecond time scales, along with demanding numerical simulations based on classical (rigid) models parametrized to reproduce thermodynamic properties of water, have provided support to this hypothesis. A stronger numerical proof requires demonstrating that the critical point, which occurs at temperatures and pressures far from those at which the models were optimized, is robust with respect to model parameterization, specifically with respect to incorporating additional physical effects. Here we show that a liquid-liquid critical point can be rigorously located also in the WAIL model of water [J. Chem. Phys. 137, 014510 (2012)], a model parameterized using ab-initio calculations only. The model incorporates two features not present in many previously-studied water models: it is both flexible and polarizable, properties which can significantly influence the phase behavior of water. The observation of the critical point in a model in which the water-water interaction is estimated using only quantum ab-initio calculations provides strong support to the viewpoint according to which the existence of two distinct liquids is a robust feature in the free energy landscape of supercooled water.
Collapse
Affiliation(s)
- Jack Weis
- Princeton University, United States of America
| | | | | | - Pablo G. Debenedetti
- Chemical and Biological Engineering, Princeton University, United States of America
| |
Collapse
|
12
|
Faccio C, Benzi M, Zanetti-Polzi L, Daidone I. Low- and high-density forms of liquid water revealed by a new medium-range order descriptor. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Gartner TE, Hunter KM, Lambros E, Caruso A, Riera M, Medders GR, Panagiotopoulos AZ, Debenedetti PG, Paesani F. Anomalies and Local Structure of Liquid Water from Boiling to the Supercooled Regime as Predicted by the Many-Body MB-pol Model. J Phys Chem Lett 2022; 13:3652-3658. [PMID: 35436129 DOI: 10.1021/acs.jpclett.2c00567] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For the past 50 years, researchers have sought molecular models that can accurately reproduce water's microscopic structure and thermophysical properties across broad ranges of its complex phase diagram. Herein, molecular dynamics simulations with the many-body MB-pol model are performed to monitor the thermodynamic response functions and local structure of liquid water from the boiling point down to deeply supercooled temperatures at ambient pressure. The isothermal compressibility and isobaric heat capacity show maxima near 223 K, in excellent agreement with recent experiments, and the liquid density exhibits a minimum at ∼208 K. A local tetrahedral arrangement, where each water molecule accepts and donates two hydrogen bonds, is found to be the most probable hydrogen-bonding topology at all temperatures. This work suggests that MB-pol may provide predictive capability for studies of liquid water's physical properties across broad ranges of thermodynamic states, including the so-called water's "no man's land" which is difficult to probe experimentally.
Collapse
Affiliation(s)
- Thomas E Gartner
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kelly M Hunter
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Eleftherios Lambros
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Alessandro Caruso
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Gregory R Medders
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | | | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
14
|
Russo J, Leoni F, Martelli F, Sciortino F. The physics of empty liquids: from patchy particles to water. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:016601. [PMID: 34905739 DOI: 10.1088/1361-6633/ac42d9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Empty liquids represent a wide class of materials whose constituents arrange in a random network through reversible bonds. Many key insights on the physical properties of empty liquids have originated almost independently from the study of colloidal patchy particles on one side, and a large body of theoretical and experimental research on water on the other side. Patchy particles represent a family of coarse-grained potentials that allows for a precise control of both the geometric and the energetic aspects of bonding, while water has arguably the most complex phase diagram of any pure substance, and a puzzling amorphous phase behavior. It was only recently that the exchange of ideas from both fields has made it possible to solve long-standing problems and shed new light on the behavior of empty liquids. Here we highlight the connections between patchy particles and water, focusing on the modelling principles that make an empty liquid behave like water, including the factors that control the appearance of thermodynamic and dynamic anomalies, the possibility of liquid-liquid phase transitions, and the crystallization of open crystalline structures.
Collapse
Affiliation(s)
- John Russo
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Fabio Leoni
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Fausto Martelli
- IBM Research Europe, Hartree Centre, Daresbury WA4 4AD, United Kingdom
| | - Francesco Sciortino
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
15
|
Gallo P, Bachler J, Bove LE, Böhmer R, Camisasca G, Coronas LE, Corti HR, de Almeida Ribeiro I, de Koning M, Franzese G, Fuentes-Landete V, Gainaru C, Loerting T, de Oca JMM, Poole PH, Rovere M, Sciortino F, Tonauer CM, Appignanesi GA. Advances in the study of supercooled water. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:143. [PMID: 34825973 DOI: 10.1140/epje/s10189-021-00139-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
In this review, we report recent progress in the field of supercooled water. Due to its uniqueness, water presents numerous anomalies with respect to most simple liquids, showing polyamorphism both in the liquid and in the glassy state. We first describe the thermodynamic scenarios hypothesized for the supercooled region and in particular among them the liquid-liquid critical point scenario that has so far received more experimental evidence. We then review the most recent structural indicators, the two-state model picture of water, and the importance of cooperative effects related to the fact that water is a hydrogen-bonded network liquid. We show throughout the review that water's peculiar properties come into play also when water is in solution, confined, and close to biological molecules. Concerning dynamics, upon mild supercooling water behaves as a fragile glass former following the mode coupling theory, and it turns into a strong glass former upon further cooling. Connections between the slow dynamics and the thermodynamics are discussed. The translational relaxation times of density fluctuations show in fact the fragile-to-strong crossover connected to the thermodynamics arising from the existence of two liquids. When considering also rotations, additional crossovers come to play. Mobility-viscosity decoupling is also discussed in supercooled water and aqueous solutions. Finally, the polyamorphism of glassy water is considered through experimental and simulation results both in bulk and in salty aqueous solutions. Grains and grain boundaries are also discussed.
Collapse
Affiliation(s)
- Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy.
| | - Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Livia E Bove
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005, Paris, France
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Luis E Coronas
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Horacio R Corti
- Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Ingrid de Almeida Ribeiro
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
| | - Maurice de Koning
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
- Center for Computing in Engineering & Sciences, Universidade Estadual de Campinas, UNICAMP, 13083-861, Campinas, São Paulo, Brazil
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Violeta Fuentes-Landete
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | | | - Peter H Poole
- Department of Physics, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Francesco Sciortino
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Christina M Tonauer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| |
Collapse
|
16
|
Foffi R, Sciortino F. Structure of High-Pressure Supercooled and Glassy Water. PHYSICAL REVIEW LETTERS 2021; 127:175502. [PMID: 34739286 DOI: 10.1103/physrevlett.127.175502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
We numerically investigate the structure of deep supercooled and glassy water under pressure, covering the range of densities corresponding to the experimentally produced high- and very-high-density amorphous phases. At T=188 K, a continuous increase in density is observed on varying pressure from 2.5 to 13 kbar, with no signs of first-order transitions. Exploiting a recently proposed approach to the analysis of the radial distribution function-based on topological properties of the hydrogen-bond network-we are able to identify well-defined local geometries that involve pairs of molecules separated by multiple hydrogen bonds, specific to the high- and very-high-density structures.
Collapse
Affiliation(s)
- Riccardo Foffi
- Department of Physics, Sapienza Università di Roma, Piazzale Aldo Moro, 2, 00185 Rome, Italy
| | - Francesco Sciortino
- Department of Physics, Sapienza Università di Roma, Piazzale Aldo Moro, 2, 00185 Rome, Italy
| |
Collapse
|