1
|
Chalkopiadis L, Lambropoulos K, Simserides C. Electronic structure, absorption spectra and oxidation dynamics in polyynes and dicyanopolyynes. Phys Chem Chem Phys 2024; 26:22149-22163. [PMID: 39119726 DOI: 10.1039/d4cp02719a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The advent of femtosecond to attosecond experimental tools has made now possible to study such ultrafast carrier dynamics, e.g., the spatial and temporal charge density evolution, after an initial oxidation or reduction in molecules, candidates for atomic wires like polyynes and dicyanopolyynes. Here, we study the electronic structure and hole transfer in symmetric molecules containing carbon, nitrogen and hydrogen, the first members in the series of polyynic carbynes and dicyanopolyynes, using methods based on density functional theory (DFT): constrained DFT (CDFT), time-dependent DFT (TDDFT) and real-time TDDFT (RT-TDDFT), with Löwdin population analysis, comparing many levels of theory and obtaining convergence of the results. For the same purposes, we develop a tight binding (TB) variant using all valence orbitals of all atoms. This TB variant is applied here in linear molecules, but it is also adequate for electronic structure, charge transfer and charge transport of non-linear molecules and clusters of molecules. We calculate the electronic structure, the time-dependent dipole moment and the probabilities of finding the hole at each site, their mean over time values, the mean transfer rates from the oxidation site to other sites and the frequency content (using charge as well as dipole moment oscillations). We take into account zero-point motion. The initial conditions for RT-TDDFT are obtained by CDFT. For TB, we explore different initial conditions: we place the hole at a particular orbital or distribute it among a number of orbitals; it is also possible to include phase differences between orbitals. Finally, we compare with available experimental data.
Collapse
Affiliation(s)
- Lazaros Chalkopiadis
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece.
| | - Konstantinos Lambropoulos
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece.
| | - Constantinos Simserides
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece.
| |
Collapse
|
2
|
Alvertis AM, Williams-Young DB, Bruneval F, Neaton JB. Influence of Electronic Correlations on Electron-Phonon Interactions of Molecular Systems with the GW and Coupled Cluster Methods. J Chem Theory Comput 2024; 20:6175-6183. [PMID: 38954597 DOI: 10.1021/acs.jctc.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Electron-phonon interactions are of great importance to a variety of physical phenomena, and their accurate description is an important goal for first-principles calculations. Isolated examples of materials and molecular systems have emerged where electron-phonon coupling is enhanced over density functional theory (DFT) when using the Green's-function-based ab initio GW method, which provides a more accurate description of electronic correlations. It is, however, unclear how general this enhancement is and how employing high-end quantum chemistry methods, which further improve the description of electronic correlations, might further alter electron-phonon interactions over GW or DFT. Here, we address these questions by computing the renormalization of the highest occupied molecular orbital energies of Thiel's set of organic molecules by harmonic vibrations using DFT, GW, and equation-of-motion coupled-cluster calculations. We find that, depending on the amount of exact exchange included in the DFT starting point, GW can increase the magnitude of the electron-phonon coupling across Thiel's set of molecules by an average factor of 1.1-1.8 compared to the underlying DFT, while equation-of-motion coupled-cluster leads to an increase of 1.4-2. The electron-phonon coupling predicted with the ab initio GW method is generally in much closer agreement to coupled cluster values compared to DFT, establishing GW as a promising route for accurately computing electron-phonon phenomena in molecules and beyond at a much lower computational cost than higher-end quantum chemistry techniques.
Collapse
Affiliation(s)
- Antonios M Alvertis
- KBR, Inc., NASA Ames Research Center, Moffett Field, California 94035, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David B Williams-Young
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Fabien Bruneval
- Université Paris-Saclay, CEA, Service de Corrosion et de Comportement des Matériaux, SRMP, 91191 Gif-sur-Yvette, France
| | - Jeffrey B Neaton
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Schröder LA, Anderson HL, Rončević I. Evaluating the interactions between vibrational modes and electronic transitions using frontier orbital energy derivatives. Chem Commun (Camb) 2024; 60:7606-7609. [PMID: 38952338 PMCID: PMC11257084 DOI: 10.1039/d4cc02066a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Vibrations affect molecular optoelectronic properties, even at zero kelvin. Accounting for these effects using computational modelling is costly, as it requires many calculations at geometries distorted from equilibrium. Here, we propose a low-cost method for identifying vibrations most strongly coupled to the electronic structure, based on using orbital energy derivatives as a diagnostic.
Collapse
Affiliation(s)
- Lisa A Schröder
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford OX1 3TA, UK.
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, KIT Campus South, Fritz-Haber-Weg 2, D-76131 Karlsruhe, Germany
| | - Harry L Anderson
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford OX1 3TA, UK.
| | - Igor Rončević
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford OX1 3TA, UK.
| |
Collapse
|
4
|
Ghosh P, Alvertis AM, Chowdhury R, Murto P, Gillett AJ, Dong S, Sneyd AJ, Cho HH, Evans EW, Monserrat B, Li F, Schnedermann C, Bronstein H, Friend RH, Rao A. Decoupling excitons from high-frequency vibrations in organic molecules. Nature 2024; 629:355-362. [PMID: 38720042 PMCID: PMC11078737 DOI: 10.1038/s41586-024-07246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/27/2024] [Indexed: 05/12/2024]
Abstract
The coupling of excitons in π-conjugated molecules to high-frequency vibrational modes, particularly carbon-carbon stretch modes (1,000-1,600 cm-1) has been thought to be unavoidable1,2. These high-frequency modes accelerate non-radiative losses and limit the performance of light-emitting diodes, fluorescent biomarkers and photovoltaic devices. Here, by combining broadband impulsive vibrational spectroscopy, first-principles modelling and synthetic chemistry, we explore exciton-vibration coupling in a range of π-conjugated molecules. We uncover two design rules that decouple excitons from high-frequency vibrations. First, when the exciton wavefunction has a substantial charge-transfer character with spatially disjoint electron and hole densities, we find that high-frequency modes can be localized to either the donor or acceptor moiety, so that they do not significantly perturb the exciton energy or its spatial distribution. Second, it is possible to select materials such that the participating molecular orbitals have a symmetry-imposed non-bonding character and are, thus, decoupled from the high-frequency vibrational modes that modulate the π-bond order. We exemplify both these design rules by creating a series of spin radical systems that have very efficient near-infrared emission (680-800 nm) from charge-transfer excitons. We show that these systems have substantial coupling to vibrational modes only below 250 cm-1, frequencies that are too low to allow fast non-radiative decay. This enables non-radiative decay rates to be suppressed by nearly two orders of magnitude in comparison to π-conjugated molecules with similar bandgaps. Our results show that losses due to coupling to high-frequency modes need not be a fundamental property of these systems.
Collapse
Affiliation(s)
- Pratyush Ghosh
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Antonios M Alvertis
- KBR, Inc., NASA Ames Research Center, Moffett Field, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Petri Murto
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Shengzhi Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | | | - Hwan-Hee Cho
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Emrys W Evans
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemistry, Swansea University, Swansea, UK
| | - Bartomeu Monserrat
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | | | - Hugo Bronstein
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Green JD, Fuemmeler EG, Hele TJH. Inverse molecular design from first principles: tailoring organic chromophore spectra for optoelectronic applications. J Chem Phys 2022; 156:180901. [DOI: 10.1063/5.0082311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The discovery of molecules with tailored optoelectronic properties such as specific frequency and intensity of absorption or emission is a major challenge in creating next-generation organic light-emitting diodes (OLEDs) and photovoltaics. This raises the question: how can we predict a potential chemical structure from these properties? Approaches that attempt to tackle this inverse design problem include virtual screening, active machine learning and genetic algorithms. However, these approaches rely on a molecular database or many electronic structure calculations, and significant computational savings could be achieved if there was prior knowledge of (i) whether the optoelectronic properties of a parent molecule could easily be improved and (ii) what morphing operations on a parent molecule could improve these properties. In this perspective we address both of these challenges from first principles. We firstly adapt the Thomas-Reiche-Kuhn sum rule to organic chromophores and show how this indicates how easily the absorption and emission of a molecule can be improved. We then show how by combining electronic structure theory and intensity borrowing perturbation theory we can predict whether or not the proposed morphing operations will achieve the desired spectral alteration, and thereby derive widely-applicable design rules. We go on to provide proof-of-concept illustrations of this approach to optimizing the visible absorption of acenes and the emission of radical OLEDs. We believe this approach can be integrated into genetic algorithms by biasing morphing operations in favour of those which are likely to be successful, leading to faster molecular discovery and greener chemistry.
Collapse
|
6
|
Lambropoulos K, Alvertis AM, Morphis A, Simserides C. Cyclo[18]carbon including zero-point motion: ground state, first singlet and triplet excitations, and hole transfer. Phys Chem Chem Phys 2022; 24:7779-7787. [PMID: 35293921 DOI: 10.1039/d2cp00343k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent synthesis of cyclo[18]carbon has spurred increasing interest in carbon rings. We focus on a comparative inspection of ground and excited states, as well as of hole transfer properties of cumulenic and polyynic cyclo[18]carbon via Density Functional Theory (DFT), time-dependent DFT (TD-DFT) and real-time time-dependent DFT (RT-TDDFT). Zero-point vibrations are also accounted for, using a Monte Carlo sampling technique and a less exact, yet mode-resolved, quadratic approximation. The inclusion of zero-point vibrations leads to a red-shift on the HOMO-LUMO gap and the first singlet and triplet excitation energies of both conformations, correcting the values of the 'static' configurations by 9% to 24%. Next, we oxidize the molecule, creating a hole at one carbon atom. Hole transfer along polyynic cyclo[18]carbon is decreased in magnitude compared to its cumulenic counterpart and lacks the symmetric features the latter displays. Contributions by each mode to energy changes and hole transfer between diametrically opposed atoms vary, with specific bond-stretching modes being dominant.
Collapse
Affiliation(s)
- Konstantinos Lambropoulos
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece.
| | - Antonios M Alvertis
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. .,Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
| | - Andreas Morphis
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece.
| | - Constantinos Simserides
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece.
| |
Collapse
|
7
|
Hele TJH, Monserrat B, Alvertis AM. Systematic improvement of molecular excited state calculations by inclusion of nuclear quantum motion: A mode-resolved picture and the effect of molecular size. J Chem Phys 2021; 154:244109. [PMID: 34241372 DOI: 10.1063/5.0052247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The energies of molecular excited states arise as solutions to the electronic Schrödinger equation and are often compared to experiment. At the same time, nuclear quantum motion is known to be important and to induce a redshift of excited state energies. However, it is thus far unclear whether incorporating nuclear quantum motion in molecular excited state calculations leads to a systematic improvement of their predictive accuracy, making further investigation necessary. Here, we present such an investigation by employing two first-principles methods for capturing the effect of quantum fluctuations on excited state energies, which we apply to the Thiel set of organic molecules. We show that accounting for zero-point motion leads to much improved agreement with experiment, compared to "static" calculations that only account for electronic effects, and the magnitude of the redshift can become as large as 1.36 eV. Moreover, we show that the effect of nuclear quantum motion on excited state energies largely depends on the molecular size, with smaller molecules exhibiting larger redshifts. Our methodology also makes it possible to analyze the contribution of individual vibrational normal modes to the redshift of excited state energies, and in several molecules, we identify a limited number of modes dominating this effect. Overall, our study provides a foundation for systematically quantifying the shift of excited state energies due to nuclear quantum motion and for understanding this effect at a microscopic level.
Collapse
Affiliation(s)
- Timothy J H Hele
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, United Kingdom
| | - Bartomeu Monserrat
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Antonios M Alvertis
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|